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Abstract 
It was shown previously that a wave number decomposition of the radial vibration measured on 
the surface of a static tire reveals the dispersion characteristics of the waves that contribute to the 
tire’s dynamic response.  In addition it was found that a circular cylindrical shell model of the tire 
treadband with air pressure acting on its interior surface successfully reproduced the main 
characteristics of the experimental dispersion relations.  To identify the wave propagation effects 
of tire rotation, rotation of the shell about a fixed axis that simulates the axle of a car has been 
considered here.  The equations of motion of a rotating circular cylindrical shell were derived in a 
fixed reference frame.  From those equations, the analytical dispersion relation was obtained after 
assuming propagating solutions for the free vibration case.  The forced solution can be then 
calculated when the system is driven by a point force at a fixed location in the reference frame.  
The latter results were interpreted physically in terms of wave propagation in the rotating system 
from the viewpoint of a fixed observer.  The dispersion relations of a rotating tire were also 
compared with those of the static tire.  It was shown that at typical rotational speeds, a static tire 
analysis could be used to predict the characteristics of the rotating tire after a simple kinematic 
compensation was performed.   
 

1. Introduction 
Two earlier articles [1,2] dealt with static tire dispersion relations that characterize both tire 
dynamics and their potential for sound radiation.  The first article described both an experimental 
measurement procedure and a wave number decomposition technique for analyzing the measured 
data.  The second article described simple analytical and numerical models of tire treadbands that 
were found to reproduce the significant features of measured tire dispersion relations.  The 
objective here was to extend the previous analytical model [2] to determine how a tire’s rotation 
affects its dispersion relations.  For this purpose, the tire treadband has been modeled as a simply 



supported, rotating circular cylindrical shell having finite width.  Both inflation pressure and 
rotational stiffening were accounted for in this model. 

Equations of motion and solutions for the case of rotating circular cylindrical shell were 
previously obtained by Huang and Soedel [3].  Those equations and solutions were formulated in a 
local coordinate system that was assumed to rotate with the shell.  That type of formulation makes 
it difficult to apply a sinusoidal point force at a fixed point simulating a contact patch excitation of 
a rotating tire, since the response is Doppler shifted in the local frame in that case.  In contrast, a 
system described in fixed, or reference, coordinates, as here, responds at the frequency of the input 
force.  Huang and Soedel also expressed their results in terms of mode shapes: here a wave 
approach has been followed.  Finally, the n = 0 circumferential mode, which can be very important 
in terms of sound radiation, was not considered in their work.  Another approach was followed by 
Vinesse and Nicollet [4], who modeled a tire as a two-dimensional membrane in reference 
coordinates.  They obtained dispersion relations from a natural vibration analysis and obtained the 
forced response to a rotating point force using a wave solution.  In their work, however, effects of 
flexural stiffness and circumferential curvature were neglected. 

 
 
 
 
 
 

 

 

 

 

 

Figure 1:  Model of tire treadband: a circular cylindrical shell with simply supported boundary 
conditions at the treadband edges. 

2. Tire Treadband Model  
Fig. 1 shows a cylindrical shell model of a tire treadband: the shell is assumed to rotate about a 
fixed axis coincident with the origin of reference coordinate system.  The local coordinate system 
attached to the treadband rotates with the treadband.  The effects of inflation pressure and 
rotational stiffening were represented through resultant in-plane residual stresses.  However, static 
deformation of the shell due to either inflation or rotation was neglected: the treadband was 
assumed to vibrate around its static, uninflated shape.   When shear deformation, rotary inertia and 
non-linear effects are neglected, a set of equations describing the three-dimensional motion of the 
shell can be derived in local coordinates [5].  Those equations can be transformed into the 
reference coordinate system by application of Reynolds’ theorem: i.e., 
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where the left hand side represents the time derivative in local (Lagrangian) coordinates, the first 
term of the right hand side is the time derivative in global (Eulerian) coordinates, Ω is the angular 
rotational speed and φ is circumferential angle in the reference frame.  After applying Eq. (1), the 
governing equations can be expressed as 
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where u is the displacement in the direction indicated by the subscript, N and Q are resultant 
normal and shear forces, respectively, the superscript r denotes residual force, and q is the external 
force applied in the direction indicated by the subscript.  In addition, ρ is the density of the 
treadband, h is its thickness, λ is the damping constant, and a is the tire radius.  The circumferential 
resultant normal force, Nφφ

 r, is related to inflation pressure and rotation speed by 
 22ΩhaapN r ρφφ +=  (3) 

where p is the inflation pressure.  The linear operators, Li (i = x,φ, r), are associated with the 
system’s stiffness and thus Eq. (3) indicates how inflation pressure and rotation affect the 
treadband’s stiffness.  When the two terms on the right hand side of Eq. (3) are compared, it can be 
concluded that the stiffening effects associated with rotation may be ignored for a typical car tire 
running at normal speeds.  That result will be demonstrated later in the paper. 

3. Wave Solutions 
As a first step towards obtaining analytical solutions to Eqs. (2-1) to (2-3), simple support 
conditions were considered to apply constraints in the radial and circumferential, but not the 
x-direction, at the treadband edges.  In that case, a set of displacements satisfying those boundary 
conditions, i.e., sinusoidal or cosinusoidal functions in the x-direction, as appropriate, can be 
identified.  That set must also be periodic in the circumferential direction.  Based upon these 
various conditions, the set of displacements were assumed to have the wave-like form     
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where the coefficients A, B and C are assumed to be real.  By substituting Eqs. (4) into Eqs. (2), and 
setting the input force and damping to zero, a matrix equation similar to an eigenvalue problem is 
obtained: i.e., 
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where 
 nΩmnmn −= ωϖ . (5-2) 

In Eq. (5-1), the stiffness terms, kij (i,j=1,2,3), are associated with the linear operators in Eqs. (2).  
Further, in Eq. (5-2) the left hand side is the natural frequency in local coordinates while the first 
term on the right hand side is the natural frequency in reference coordinates.  For future reference, 
Eq. (5-2) will be denoted the “kinematics relation”.  The characteristic equation obtained from Eq. 
(5-1) is sixth order: i.e., there are six natural frequencies associated with each (m,n) wave mode.  
However, the negative-going wave mode (m,-n) has the same natural frequency as the 
positive-going (m,n) wave mode.  Thus, when a local natural frequency is defined to be positive, 
the sign convention used in the assumed displacements means that a positive n denotes a 
positive-going wave and a negative n a negative-going wave.  It can thus be concluded that there 
are only three distinct natural frequencies associated with each (m,n) wave mode.  Each of those 
frequencies is associated with a particular wave type: i.e., flexural, longitudinal, or shear. 

  The natural frequencies can be found from the characteristic equation derived from Eq. 
(5-1) as can the associated modal vectors.  The forced response can then be expressed as a 
superposition of wave modes: i.e., 
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where the l index represents the three natural frequencies for each wave mode.  The modal 
weighting function, ηk(t), can be calculated by substituting Eqs. (6) into Eqs. (2) and then applying 
Eq. (5) with forcing terms included.  The result is  
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Eq. (7-1) may then be solved for ηk(t). 
 

Table 1: Material parameters for tire treadband. 
 

Young’s Modulus E = 4.8×108 N/m2 
Density ρ = 1200 kg/m3 
Thickness h = 0.008 m 
Poisson’s ratio v = 0.45 
Radius a = 0.32 m 
Width L = 0.16 m 
Damping ratio ζ = 0.05 
Inflation pressure p = 206910 Pa (p = 30 psi) 
Sidewall tension Nx

r = 2×104 N/m 

4. Results and Discussion 
The material parameters used here are listed in Table 1: they were adapted from the literature, were 
based on physical reasoning, or were obtained by direct measurement.   

Fig. 2 shows the dispersion relations obtained by solving the system characteristic equation.  
Note that kφ in the x-axis of the figures is the circumferential wave number which is related to the 
circumferential mode number, n, by kφ = n/a. Thus, the dispersion relations are defined at a set of 
discrete points.  Here each trajectory of the dispersion relation is associated with a cross-sectional 
mode index: i.e., m = 1, etc. in Fig. 2(a).  For each combination of circumferential and 
cross-sectional mode numbers, there are three natural frequencies associated primarily with 
flexural, shear, and longitudinal motions in order of increasing frequency [2].  The static 
dispersion relations are plotted in Fig. 2(a).  In Fig. 2(b), the local natural frequencies are plotted 
when the rotation speed was set to the artificially large value of Ω = 500 rad/s to amplify the effects 
of rotation: a more typical range is from Ω = 0 to Ω = 100 rad/s.  By comparison with Fig. 2(a), two 
phenomena can be observed.  First, it can be seen that the wave speed is increased by rotational 



stiffening (i.e., the slope of the modal trajectories is increased.).  Secondly, on close examination, 
it can be seen that the dispersion curves are asymmetrical with respect to the zero wave number 
axis: this is the so-called “bifurcation” effect.  This asymmetry means that the speeds of waves 
propagating in opposite directions with the same wavelengths are different even when observed in 
local coordinates.  However, the present results indicate that this effect is negligible under normal 
circumstance.  Results in local coordinates for a more typical speed, Ω = 100 rad/s, are plotted in 
Fig. 2(c).  By comparison with the Ω = 0 results, it can be seen that the stiffening due to rotation is 
not very significant in this case, as explained earlier in connection with Eq. (3).  Finally, the 
dispersion relations in the reference frame are plotted in Fig. 2(d), also for Ω = 100 rad/s.  Note that 
the latter results were obtained from those of Fig. 2(c) after applying the kinematics relation, Eq. 
(5-2).  In Fig. 2(d), the asymmetry resulting from the kinematic effect of tire rotation is very clear 
in contrast with the bifurcation effect in the local coordinates (Fig. 2(c)). 

 For the purpose of validating the modeling and solution procedures, the stationary model 
(Ω = 0) was reproduced using a FE model [2].  The corresponding wave number-transformed 
forced solutions (presented as radial velocity magnitude) for a radial point force on the treadband 
centerline calculated using FE and analytical procedures are plotted in Fig. 3.  The two results are 
identical for practical purposes.  
 The spatial distribution of the centerline radial velocity for a radial point force applied on 
the centerline and fixed with respect to the reference frame (simulating a contact patch excitation) 
is plotted in the reference frame in Fig. 4(a), and the corresponding circumferential wave number 
transformed results are shown in Fig. 4(b).  Note that zero deg. in Fig. 4(a) indicates the drive point.  
One interesting aspect of these results is that standing wave patterns appear even under rotation.  
The standing waves are made possible by damping, since the latter causes the dispersion 
trajectories to have a finite width, thus making it possible for there to be components propagating 
in opposite directions with the same wavelength at the same frequency.  A comparison of the 
responses in the positive and negative φ regions of Fig. 4(a) shows that the standing wave pattern is 
more obvious in the region φ < 0: i.e., upstream of the drive point.  It can also be seen that there are 
no even modes in the results of Fig. 4(b) (compare with Fig. 2(d)) since the point force was applied 
at the center of treadband.  Also note that the trajectories in Fig. 4(b) are continuous (not discrete as 
in Fig. 2) because of the effect of damping.  Finally, note that the asymmetry of the trajectory 
slopes in Fig. 4(b) indicates that waves travel more quickly downstream (kφ > 0) as expected.  
Since both rotational stiffness and bifurcation effects are essentially negligible, it is possible to 
map the static forced response (Fig. 3(b)) onto the rotation response by using Eq. (5-2). 

5. Conclusion 
In the work described here, the treadband of a tire was modeled as a rotating circular cylindrical 
shell in order to identify the effects of rotation.  A wave-based solution procedure was applied to 
obtain analytical solutions for both free and forced vibration cases.  This procedure has been 
verified by comparison with FE simulations.  It was shown that rotation has two principal effects: 
stiffening of the treadband and “tilting” of the dispersion curves.   It was found, however, that the 
rotational stiffening effect was not significant compared with the effect of inflation pressure at 
typical rotational speeds.  In contrast, the kinematic tilting effect was found to be significant.   
Thus, it was concluded that a linear function, Eq. (5-2), could be used to adjust the static dispersion 
curve which could then be used to analyze the potential of a rotating tire to radiate sound. 
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Figure 2:  Dispersion relations derived from characteristic equation: • - flexural wave, × - shear 
wave, and ∗ - longitudinal wave: (a) Ω = 0, (b) natural frequencies in local coordinates when Ω 
= 500 rad/s, (c) natural frequencies in local coordinates when Ω = 100 rad/s and (d) natural 
frequencies in reference coordinates when Ω = 100 rad/s.  



 
Figure 3:  Comparison of analytical forced response with FE simulation when Ω = 0: (a) FE 
simulation and (b) analytical solution. 

 
Figure 4:  Forced response when Ω = 100 rad/s: (a) amplitude of vibration at treadband center 
and (b) dispersion relation obtained by circumferential wave number transform. 


