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ABSTRACT 
For the purpose of identifying the sound transmission characteristics of honeycomb sandwich 
panels that are commonly used in aircraft industries, Finite Element Method (FEM) combined 
with Boundary Element Method (BEM) has been widely used.  However, the latter approach is 
not always applicable to high frequency analysis since it requires a large number of FEM/BEM 
meshes resulting in high computational cost.  Although various analytical methods can also be 
used, their applications are restricted to few panels, e.g., that have simple layer configuration. 
Here, a hybrid analytical/one-dimensional FEM is described that uses finite element 
approximation in the thickness direction while analytical solutions are assumed in the plane 
directions.  Thus, it makes possible to use small number of finite elements even for high 
frequency analysis in computationally efficient manner.  The proposed method can be used to 
analyze the effects of boundary conditions at the edges of a panel.  It can also be used to 
analyze various multi-layered panels of which each layer is represented by orthotropic material 
properties.  As an application, the sound transmission characteristics of infinite-size panels are 
analyzed.  By comparison with experimental data, it is shown that the proposed method 
successfully identify the sound transmission characteristics of honeycomb sandwich panels. 

 

1 INTRODUCTION 
Multi-layered, composite panels have been widely used in aircraft industries due to their 

superior mechanical properties (i.e., light weight and high strength).  However, it is well known 
that their sound transmission characteristics are generally poor, which makes them unfavorable 
to interior noise.  As interior noise has been increasingly emphasized, it has been much more 
desirable to investigate the sound transmission characteristics of multi-layered composite panels 
in detail.    

For the purpose of investigating various composite panels in general, it is required to 
consider thick panels of which thickness is comparable to structural wave length at the maximum 
frequency of interest.  It is also desired to consider various waves (e.g., flexural, shear, and 
longitudinal waves) propagating though the panels.  In addition, it is required to account for 
orthotropic material properties: e.g., fiber materials are inserted to reinforce composite materials 
in particular directions.    

To accommodate aforementioned aspects, various numerical and analytical methods have 
been developed.  In particular, Finite Element Method (FEM) combined with boundary element 
method (BEM) has been widely used.  However, the latter approach is not always applicable to 
relatively high frequency analysis since it is required to use a large number of FEM/BEM 

 
a Email address: yong-joe.kim@boeing.com 



meshes resulting in high computational cost.  Although various other methods can be used to 
analyze the sound transmission characteristics of multi-layered, composite panels in high 
frequency region, their applications are restricted to few composite panels that have simple layer 
configuration, such as sandwich panels, thin panels, or panels with isotropic or transverse-
isotropic layers. 

Here, a hybrid analytical/one-dimensional finite element method is described that uses finite 
element approximation in the thickness direction while analytical solutions are assumed in the 
plane directions.  Thus, it makes possible to use small number of finite elements even for high 
frequency analysis in computationally efficient manner.  Since the hybrid FE formulation 
presented in this article is expressed as spatial differential equation in the plane directions, it can 
be also used to analyze the effects of various boundary conditions, at the edges of a panel, which 
significantly affects sound transmission characteristics in low-frequency region.  However, in 
this article, it is focused on infinite-sized panels so that sound transmission characteristics can be 
only dependent on the properties of panels (not on boundary conditions).   

The hybrid analytical/one-dimensional finite element method is here applied to analyze the 
sound transmission characteristics of various honeycomb sandwich panels.  Each layer of the 
panels is represented by a set of orthotropic material properties and total panel thickness can be 
large compared to the minimum structural wave length of interest.  It is observed that the hybrid 
FE Transmission Loss (TL) predictions agree well with the measured data.  In addition, TL 
sensitivity with respect to each design variable is presented that indicate how much each variable 
contributes to the TL results.  As an application, the TL sensitivity results are here used to 
modify material properties to make the hybrid FE predictions match better with the experimental 
data.  In order to understand the sound transmission characteristics in detail, both flexural and 
core shear waves propagating through the panels have been identified in the wave-
number/frequency domain.  It is found that in low frequency region, flexural wave dominates 
sound transmission behaviors for the honeycomb sandwich panels considered in this article: 
while in high frequency region, core shear wave mainly affects sound transmission 
characteristics.  It is also shown that the critical frequency is generally located where the flexural 
wave is in transition to the core shear wave for the honeycomb panels. 

 

 
Figure 1: Illustration of hybrid FE model of double-layered panel. 



2 FORMULATION OF HYBRID FINITE ELEMENT 
For FE formulation, it is assumed that each layer is homogeneous: i.e., each layer is assumed 

to be represented by a single set of material properties.  It is also assumed that each layer has 
constant thickness.  Figure 1 illustrates a hybrid FE model of a double-layered panel.  In this 
model, two elements are used to represent layer 1 and one element for layer 2.  Since the 
displacements are approximated by the combination of nodal displacements and linear 
interpolation functions in the z-direction, there are two nodes per one element.  In the following 
section, a hybrid analytical/one-dimension FE formulation is derived for a single element.  The 
global equation of motion for a multi-element system can then be obtained by assembling the 
local element equation. 

2.1 Equation of Motion  
The displacements of a single hybrid element can be approximated in terms of the nodal 

displacements (which are the functions of x, y, and t) combined with linear interpolation 
functions in the z-direction [1].  Then, the equation of motion for the element can be derived 
using the procedure described in Ref. [2]: i.e.,  
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where u is the nodal displacement vector, K is the element stiffness matrix, and M represents the 
element mass matrix.  In Eq. (1), f and fi are the external and internal force vectors, respectively.  
Note that a set of orthotropic material properties can be considered when the stiffness matrices 
are calculated.  For a multi-element system, each local element matrix can be assembled into a 
global matrix.  For compact notation, the same symbols are used for both local and global 
quantities from now on.  The left-hand-side terms associated with the stiffness matrices in Eq. 
(1) can be represented as the linear operator defined by 
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When the system is assumed to be excited at a single angular frequency of ω, the global equation 
of motion can be expressed as 

{ } )()()( 2 xfxuMxuL ωω j−=− &&  (3) 
where x represents a vector in x-y plane: i.e, x = (x, y).  Note that the internal force vector in Eq. 
(1) is not shown in Eq. (3) since a pair of internal forces facing each other is cancelled during 
global matrix assembly process.  

2.2 Sound Transmission through Hybrid FE System 
When a plane wave is incident on the bottom surface of a panel at a single frequency, the 

external force vector in Eq. (3) is represented as the combination of incident, reflected, and 
transmitted sound pressures: i.e.,   
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where pi, pr, and pt are the incident, reflected, and transmitted sound pressures, respectively, and 
s1 and sN represent the unit vectors normal to the bottom and top surfaces of the panel, 
respectively.  For an infinite-size panel, a set of wave solutions can satisfy Eq. (4): i.e.,  
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)exp(ˆ)( rr yjkxjkpp yx +=x , (7) 
and 
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where the upper caret represents complex magnitude.  After substituting Eqs. (5) to (8) into Eq. 
(4) and omitting the upper carets and plane wave terms represented by exponential function, the 
velocity vector can be calculated as 
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Note that the last term including R1 and RN in Eqs. (12) and (13) represent acoustic loading on 
the panel.  Note also that the stiffness matrix, K includes both real and imaginary parts regardless 
of the presence of damping (see Eq. (10)).  Thus, spatially decaying waves can be propagating 
though the panels even though there is no sound radiation or structural damping.  When plane 
wave is incident at the angles of φ and θ, intensity transmission coefficient is represented as a 
function of φ and θ: i.e., 
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By integrating the intensity transmission coefficient with respect to φ and θ, diffuse field 
transmission coefficient can be calculated [3]: i.e., 
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Then transmission loss is calculated by using 
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Although the integral interval of the incidence angle θ in Eq. (15) is represented from 0° to 90°, 
it is limited to be θmax = 78° (i.e., θ = 0° to 78°) to consider field incidence effects [3] in the 
following results. 

3 TL RESULTS 
The hybrid FE models shown in this article consist of 10 or fewer hybrid elements.  As a 

result, it usually takes 1-2 minutes to analyze each of the following TL cases with a computer 
with 3.2 GHz dual Intel Xeon processors and 4 GB RAM (it is just for computational time 
excluding the time required for modeling).  Note that it is usually take 1-2 hours to analyze a 



similar problem by using full, 3-D FEM/BEM models.  Note also that the maximum frequency 
for full, 3-D FEM/BEM analysis is much lower than that of hybrid FE analysis.   

 
Table 1: Material properties of aluminum panel 

Density (ρ0) 1.21 kg/m3
Air 

Speed of sound (c0) 343 m/s 
Thickness (d) 0.005 m 
Young’s modulus (E) 7.1×1010 Pa 
Poisson’s ration (ν) 0.3292 
Density (ρ) 2700 kg/m3

Aluminum Panel 
(Isotropic Material) 

Structural loss factor (η) 0.03 
 

 
Figure 2: TL results of aluminum panel. 

3.1 Aluminum Panel 
As an example, 5 mm aluminum panel is analyzed by using hybrid FE method.  Table 1 

shows the material properties of the aluminum panel.  Figure 2 shows the analytical and hybrid 
FE TL results.  It is shown that the hybrid FE results well agree with the analytical results.   

3.2 Aluminum-Foam-Aluminum Sandwich Panel 
The material properties and experimental TL data of an aluminum-foam-aluminum sandwich 

panel are provided courtesy of the Purdue University.  Table 2 shows the material properties and 
the TL results are shown in Fig. 3.  It is observed that the predicted TL results agree well with 
the measured TL results although there are some discrepancies in both low and high frequency 
regions (e.g., below 200 Hz and above 2 kHz).  In the low frequency region, the discrepancy may 
be caused by the finite size effects: note that an infinite-size panel model is used for the hybrid 
FE analysis while the experimental panel is a finite-size one. 

Since the hybrid FE model uses only elastic properties for the foam core (not poroelastic 
properties), it may not properly represent the foam core in the high frequency region, which 
results in the TL difference between the predicted and measured TL results in this frequency 
regions.  In the future, the porous effects will be considered by using poroelastic elements.    



Table 2: Material properties of aluminum-foam-aluminum sandwich panel (courtesy of Purdue University) 

Structural loss factor (η) 0.10 Aluminum Face Sheet 
(Isotropic Material) Other properties are the same as those given in Table 1. 

Thickness (d) 0.0254 m 
Density (ρ0) 7.64 kg/m3

Young’s Modulus (E) 2.53×105 Pa 
Poisson’s ration (ν) 0.42 
Structural loss factor (η) 0.2 
Flow Resistivity 12180 MKS Rayls/m 
Tortuosity 1.5 

Wiltec Foam  
(Isotropic Material) 

Porosity 0.99 
 
 

 
Figure 3:  TL results of aluminum-foam-aluminum sandwich panel (experimental data are presented courtesy of 

Purdue University). 

3.3 Honeycomb Sandwich Panels 
The material properties of two honeycomb sandwich panels are listed in Table 3.  The hybrid 

FE models consist of two elements for each skin and six elements for core.  The TL results are 
compared with experimental results in Figs. 4 and 5.  Below 300 Hz (500 Hz for Configuration 
2), the measured TL values are higher than the predicted values due to boundary effects and 
imperfect reverberant conditions for Configuration 1: e.g., the maximum TL difference is 
approximately 7 dB for Configuration 1 (6 dB for Configuration 2).  In this frequency range, 
however, the hybrid FE TL results well agree with the Mass Law.  Note that the cut-off 
frequency of the reverberant room is approximately 250 Hz: i.e., below the cut-off frequency, the 
incident sound field of the reverberant room can not be assumed to be reverberant.  In the high 
frequency region, the hybrid FE and experimental results well agree to each other within the 
difference of 1 dB for Configuration 1.  For Configuration 2, these two results well agree to each 
other up to 4 kHz.  In the frequency range form 4 kHz to 6.4 kHz, the discrepancy between the 
hybrid FE and experimental results may be caused by inaccurate TL measurement.  It may also 
be caused by inaccurate prediction or measurement of material properties used for the FE model. 



Table 3: Material properties of honeycomb sandwich panels 
 Configuration 1 Configuration 2 

Thickness (d) 5.842×10-4 m 4.572×10-4 m 
Density (ρ) 1716 kg/m3 1778 kg/m3

Young’s Modulus (E) 6.128×1010 Pa 1.523×1010 Pa 
Poisson’s Ratio (ν) 0.143 0.142 

Face Sheet 
(Isotropic Material) 

Loss factor (η) 0.05 0.05 
Thickness (d) 0.9017×10-2 m 1.905×10-2 m 
Density (ρ) 128.1 kg/m3 48.1 kg/m3

Young’s Modulus (Exx) 6.895×105 Pa 6.895×105 Pa 
Young’s Modulus (Eyy) 6.895×105 Pa 6.895×105 Pa 
Young’s Modulus (Ezz) 5.792×108 Pa 1.310×108 Pa 
Shear Modulus (Gyz) 7.033×107 Pa 2.550×107 Pa 
Shear Modulus (Gzx) 1.570×108 Pa 4.900×107 Pa 
Shear Modulus (Gxy) 6.985×105 Pa 6.985×105 Pa 
Poisson’s Ratio (νyz) 0.01 0.01 
Poisson’s Ratio (νzx) 0.01 0.01 
Poisson’s Ratio (νxy) 0.50 0.50 

Nomex Core 
(Orthotropic Material) 

Loss factor (η) 0.05 0.05 
 

 
Figure 4: TL results of honeycomb sandwich panel (Configuration 1) 

 



 
Figure 5: TL results of honeycomb sandwich panel (Configuration 2). 

4 TL SENSITIVITY 
Figure 6 shows the TL sensitivities of the honeycomb sandwich panel (Configuration 1) with 

respect to its material properties.  In the low frequency region (i.e., below the critical frequency 
around 1.1 kHz), the TL variation is the most sensitive to the skin and core density variations 
while in the high frequency region, it is the most sensitive to the core shear moduli and core 
damping variations.  Thus, the low frequency region may be referred to as mass controlled 
region while the high frequency region as core shear stiffness controlled region.  In the critical 
frequency region (i.e., valley-shape TL region around 1.1 kHz in Fig. 4), the variations of all 
material properties except the core Young’s modulus in the z-direction are important in terms of 
the TL sensitivities: note that the skin Young’s modulus is the most sensitive to the TL variation 
in this critical frequency region. 

 

 
Figure 6: TL sensitivities with respect to material properties of honeycomb sandwich panel (Configuration 1). 



5 WAVE PROPAGATION CHARACTERISTICS 
The contour plot in Fig. 7 represents the dispersion relations of the honeycomb sandwich 

panel (Configuration 1) calculated by using the hybrid FE model.  Note that the dispersion 
relations are calculated based on the vibrational response of the panel in vacuum (i.e., when there 
is no sound radiation).  Note that in Fig. 7, the dark red represents the highest vibrational 
response and the dark blue represents the lowest vibrational response.  On the top of the contour 
plot, the dispersion curves of sound wave (in air), flexural wave, and core shear waves are 
overlaid in straight lines.  In Fig. 7, the sound and core shear waves have constant wave speeds: 
i.e., sound wave speed is 343m/s and core shear wave speeds are 476m/s and 711m/s.  Note that 
the core shear wave speed is calculated by using 

m
Gc =c.s.  (17)

where G is the core shear modulus (i.e., Gzx or Gyz in Table 3) and m is the mass per unit area.  
For the honeycomb sandwich panel presented in Fig. 7, the sound wave is slower than shear 
waves, which is generally true for most Nomex honeycomb sandwich panels.  Note that the core 
shear wave in the x-direction is faster than that in the y-direction since the core shear moduli are 
different in both principle directions (see the core shear moduli in Table 3).  Note also that in the 
low frequency region, the peak vibrational response asymptotically converges to flexural wave 
(as frequency decreases): in the high frequency region, there are two vibrational peaks, each 
peaks asymptotically converge on each core shear waves (as frequency increases).  In the mid 
frequency region, the vibrational response is in transition from flexural wave to core shear 
waves.  The sound wave is coincident with the vibrational peak in this frequency region.  As a 
result, the TL valley appears approximately at 1.1 kHz (see Fig. 4). 

 

 
Figure 7: Dispersion relation of honeycomb sandwich panel (Configuration 1). 

6 CONCLUSIONS 
In this article, the hybrid analytical/one-dimensional FE method is described that can be used 

to analyze sound transmission characteristics of multi-layered, composite panels of which each 
layer is represented by orthotropic material properties.  By comparing with analytical solution as 
well as experimental results, it is shown that the hybrid FE method can be successfully used to 



analyze various panels.  It is also shown that the proposed method can be extended to study the 
effects of design variable variations on sound transmission characteristics. Through the 
dispersion relations of the honeycomb sandwich panel, it is observed that in low frequency 
region, flexural wave dominates sound transmission behaviors of the panel: while in high 
frequency region, core shear wave mainly affects sound transmission characteristics.  Finally, the 
coincidence phenomenon is observed at a frequency band where the sound wave is matching 
with structural wave in the wave number/frequency domain.  In the honeycomb panel considered 
in this article, the coincident phenomenon is observed at the transition region from flexural 
waves to core shear waves. 

7 FUTURE WORK 
In the future, a hybrid FE formulation for curved panels will be developed, which makes it 

possible for the hybrid FE method to be applied to identify the sound transmission characteristics 
of various curved shell structures such as airplane fuselage sections.  Poroelastic and acoustic 
elements will be also included, allowing the hybrid FE analysis to be applicable to the porous 
materials.  Finally, the finite size effects will be considered by using modal solutions in the plane 
directions. 
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