
Baltimore, Maryland 

NOISE-CON 2010 
2010 April 19-21 

 

Planar Nearfield Acoustical Holography in High-Speed, Subsonic 

Flow  
 
Yong-Joe Kim

a) 

Texas A&M University 
Department of Mechanical Engineering 
3123 TAMU 
College Station, TX 77843-3123 
 
Hyusang Kwon

b) 

Korea Research Institute of Standards and Science 
P.O. Box 102, Yuseong 
Deajon, 305-340 
South Korea 

 

The objective is to develop a NAH procedure that includes the effects of the high-speed, 

subsonic flow of a fluid medium. Recently, the speed of a transportation has significantly 

increased, e.g., to close to the speed of sound. As a result, the NAH data measured with a 

microphone array attached to an aircraft or train include significant airflow effects. Here, 

the convective wave equation along with the convective Euler’s equation is used to derive 

the proposed NAH procedure. A mapping function between static and moving fluid 

medium cases is also derived from the convective wave equation. Then, a new wave number 

filter defined by mapping the static wave number filter is proposed. For the purpose of 

validating the proposed NAH procedure, a monopole simulation at Mach = -0.6 is 

conducted. The reconstructed acoustic fields obtained by applying the proposed NAH 

procedure to the simulation data match well with the exact fields. Through an experiment 

with two loudspeakers performed in a wind tunnel at the airflow speed of Mach = -0.12, it 

is also shown that the proposed NAH procedure can be used to successfully reconstruct the 

sound fields radiated from the two loudspeakers. 
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1 INTRODUCTION 

Nearfield Acoustical Holography (NAH) is a powerful tool that can be used to visualize 

three-dimensional sound fields by projecting the sound pressure data measured on a 

measurement surface.  The NAH procedure that includes the evanescent wave components (i.e., 

subsonic wave components) to improve the spatial resolution of a reconstructed sound field was 

first introduced by Williams et al. in 1980s.
1-3

  Since then, many researchers have improved the 

NAH procedure and applied the improved NAH procedures to various vibro-acoustic and 

aeroacoustic problems.   



When the pressure data measured on a hologram surface (i.e., the measurement surface) are 

projected to other surfaces by using a NAH procedure, the pressure data should be spatially 

coherent.  That is, it is required that there is only a single coherent source in the system of 

interest or that all measurement points in a measurement aperture are measured at the same time.  

The former condition is not always satisfied since the most of “real” systems have a composite 

source consisting of multiple incoherent noise sources.  The latter condition requires a large 

number of microphones that completely cover a composite source although extensive research 

has been conducted to correctly project the sound pressure data measured only on a small patch 

measurement aperture.
4-8

  

In order to satisfy the coherence requirement, the scan-based, multi-reference NAH 

procedure was introduced by Hald.
9
  In this procedure, a small number of microphones is used to 

measure the sound pressure data on a patch of a complete hologram surface during each scanning 

measurement while multiple reference microphones are fixed at their locations throughout the 

complete scanning measurements.  The measured patch data are combined to obtain complete 

data on the hologram surface.  The combined hologram data are then decomposed into partial 

sound pressure fields, each is spatially coherent.  Hald first proposed to use Singular Value 

Decomposition (SVD) to decompose the hologram data.
9
  Then, each of all partial fields on the 

hologram surface is repetitively projected to other surfaces.  The total projected fields are 

calculated by combining all of the projected partial fields.   

The scan-based, multi-reference NAH procedure is based on the assumption that the sound 

field radiated from a composite source is stationary during scanning measurements.   However, 

in a “real” NAH measurement, the sound field is not always stationary resulting in non-

stationary effects.  For the purpose of reducing the non-stationarity effects, a source non-

stationarity compensation procedure was introduced by Kwon et al., provided that source levels 

are assumed to be non-stationary while their directivities remain unchanged during scanning 

measurements.
10

  

In order to obtain physically-meaningful partial fields, it is required to place reference 

microphones close to noise sources.
11

  Then, each of the resulting partial fields can be associated 

with a specific noise source.  However, it is not always possible to physically place reference 

microphones close to noise sources.  Kim et al. proposed to use virtual references of which 

locations are identified where beamforming powers are maximized.
11

  The virtual reference 

procedure makes possible to identify physically-meaningful partial fields regardless of the 

physical locations of reference microphones.    

When a NAH measurement is made with a microphone array fixed on a moving 

transportation means, the measured data includes the effects of the moving fluid medium such as 

the Doppler Effect.  For example, jet noise data can be measured on the fuselage surface of a jet 

aircraft during its cruise condition (e.g., at Mach = 0.7) to visualize the jet noise radiated from its 

jet engine to fuselage surface.  Another example can be the tire noise data measured with a 

microphone array attached to a moving vehicle.  Note that the latter measurement cases can be 

assumed to be equivalent to the case where there is no motion with a noise source and receiver 

while the fluid medium is in motion with a uniform velocity.  Ruhala et al. proposed a planar 

NAH procedure in a low-speed, moving fluid medium (e.g., below Mach = 0.1).
12

  In the low-

speed case, it can be assumed that a static radiation circle is shifted in the flow direction while its 

radius increases due to the mean flow.  Thus, they proposed a wave number filter based on the 

shifted and expanded radiation circle.  It was also assumed that the particle velocities 

perpendicular to the flow direction are not affected by the mean flow. 

When the flow speed of a fluid medium is high and subsonic, the low-speed approximations 

used in the NAH procedure proposed by Ruhala et al. are no longer valid.  In this article, an 



improved NAH procedure is described that can be applied to the high-speed, subsonic flow 

conditions.  In particular, a new wave number filter is proposed that is defined by mapping the 

static wave number filter.  It is also proposed to consider the mean flow effects on the 

reconstructed particle velocities in the flow direction as well as in the directions perpendicular to 

the flow direction.  Note that the proposed NAH procedure can be applied to any subsonic and 

uniform flow conditions regardless of low or high Mach number as long as the Mach number is 

within -1 to 1 range.  For the purpose of validating the proposed NAH procedure, a monopole 

simulation at the airflow speed of Mach = -0.6 is conducted.  An experiment with two 

loudspeakers in a wind tunnel at Mach = -0.12 is also performed. 

In the following theory sections, a spatially-coherent, partial sound pressure field on a 

hologram surface is assumed to be given that can be obtained by using the procedures described 

in Refs. 10 and 11.   

2 THEORY 

2.1 Planar NAH in Static Fluid Medium 

 In order to present the proposed NAH procedure in a consistent and comprehensive manner, 

consider a conventional NAH procedure that can be applied to the static case where the fluid 

medium, composite noise source, and receiver are not in motion.  When sound pressure is 

measured on a measurement plane at z = zh (i.e., hologram plane), the measured pressure field 

can be decomposed into spatially-coherent, partial sound pressure fields.
9-11

  Each partial field 

can be then expressed as a superposition of plane wave components by applying the spatial 

Fourier Transform to the partial field, p(x,y,zh,t).  The plane wave components (i.e., the sound 

pressure spectrum) in wave number domain, (kx, ky), can be written as 

 )],,,([),,,( tzyxpzkkP hhyx F  (1) 

where F represents the Fourier Transform.  Note that in a real implementation, the Fast Fourier 

Transform (FFT) is applied to spatially-sampled pressure data instead of the Fourier Transform. 

The sound pressure spectrum on a reconstruction surface of z = zr can be calculated from the 

measured spectrum by multiplying the plane wave propagator: i.e.,  

 ( , , , ) ( , , , ) ( , , , )x y r x y h p x y r hP k k z P k k z K k k z z    . (2) 

In Eq. (2), Kp is the pressure propagator defined as 
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In Eq. (4), k is the wave number defined as k = /c0 where c0 is the speed of sound.  The 

projected particle velocity spectrum can be obtained by applying Euler’s equation into Eq. (2).  

Then, the velocity propagator is defined as 
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where 0 is the static density of the fluid medium.  Thus, the projected velocity spectrum in the j-

direction can be obtained from Eq. (2) by replacing Kp with Kj.  Note that the circle with the 

radius of r = k obtained by setting kz = 0 in Eq. (4) is referred to as the radiation circle: i.e., 
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For the plane wave components inside of the radiation circle (referred to as supersonic 

components), the z-direction wave number, kz is a real number: i.e., the first case in Eq. (4).  

Thus, the propagator, K in Eq. (3) or (5) results in only phase change between two spectra at z = 

zr and z = zh.  However, when a wave component is outside of the radiation circle (that is referred 

to as a subsonic component), kz is an imaginary number: i.e., the second case in Eq. (4).  As a 

result, the propagator exponentially increases or decreases the amplitude radio of the two spectra.  

That is, the propagator exponentially increases the amplitude of the hologram spectrum in the 

case of zr – zh < 0 (i.e., backward NAH projection) while it exponentially decreases the 

amplitude when zr – zh > 0 (i.e., forward NAH projection).  Thus, the propagator inside of the 

radiation circle represents a propagating wave while the propagator outside of the radiation circle 

represents an evanescent wave.  Note that the evanescent wave applied during a backward NAH 

projection improves the spatial resolution of a reconstructed sound field.  However, the 

measurement noise outside of the radiation circle is also amplified exponentially during the 

backward projection procedure.  For the purpose of suppressing the measurement noise, it is 

recommended to apply the wave number filter proposed by Kwon
13

 before applying the 

backward NAH projection (see Appendix A).   

The reconstructed pressure or velocity field is obtained by applying the inverse Fourier 

Transform to the projected pressure or velocity spectrum: e.g., 

 )],,,([),,,( 1 ryxr zkkPtzyxp  F . (7) 

The aforementioned NAH procedure is repetitively applied to all of the partial fields on the 

hologram surface.  The projected partial fields are then combined to obtain the total fields on the 

reconstruction surface.  Note that sound intensity field can be calculated by multiplying the 

projected pressure and velocity fields. 

 

2.2 Plane Wave Propagation in Moving Fluid Medium 

 Consider the (,,) coordinate system in a moving fluid medium that is corresponding to 

the (x,y,z) coordinate system in a static medium.  When the fluid medium is moving at the 

uniform -direction velocity of U while a composite noise source and receiver are not in motion, 

the convective wave equation
14

 can be represented as 
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where D/Dt is the total derivative (or referred to as the material derivative) that is defined as 
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The convective Euler’s equation
14

 that relates acoustic pressure and particle velocities can also 

be written in terms of the total derivative: i.e., 
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For the purpose of analyzing the plane wave propagation characteristics in the convective fluid 

medium, consider the sound pressure and particle velocity solutions represented as  

 ( , , , ) exp[ ( )]p t P i k k k t             (11) 

and 

 ( , , , ) exp[ ( )]j jv t V i k k k t             (12) 

where the subscript, j represents the particle velocity direction (i.e., j = , , or ).  By applying 

the sound pressure solution of Eq. (11) into Eq. (8), the characteristic equation can be found as 

 2 2 2 2 2(1 ) 2k k M k kMk k         (13) 

where M is the Mach number defined as 
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Similarly, by substituting Eqs. (11) and (12) into Eq. (10), the pressure and velocity can be 

related as 
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To determine a mathematical expression for the border line between supersonic and subsonic 

components, consider the case of k = 0 in Eq. (13): i.e.,  
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Eq. (16) represents an ellipse with the semimajor axis, r1 and semiminor axis, r2 centered at the 

point of (-a, 0).  The ellipse can be referred to as the “radiation ellipse” that is corresponding to 

the radiation circle in the static fluid medium: i.e., the wave components inside of the radiation 

ellipse represent propagating waves while the outside wave components represent evanescent 

waves.  When compared with the radiation circle shown in Eq. (6), the center of the radiation 

ellipse is shifted by -a along the flow direction.  The radius of r = k increases to r1 in the -



direction and r2 in the -direction for the case of a subsonic flow (i.e., |M| < 1).  A mapping 

function that maps the radiation circle in the (kx,ky) domain to the radiation ellipse in the (k,k) 

domain is then defined as   

  1 2( , ) ( ) / , /x yk k k k a r kk r   . (20) 

The mapping of the radiation circle to the radiation ellipse is shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Mapping of radiation circle (M = 0) to radiation ellipse (0 < M < 1).   

2.3 NAH Procedure in Moving Fluid Medium 

When the sound pressure data are measured in the moving fluid medium, the forward and 

inverse Fourier Transforms given in Eqs. (1) and (7) can be re-used without any modifications.  

The Fourier Transforms then relate the sound pressure fields between the (,) and (k,k) 

domains.  From Eqs. (13) and (15), the pressure and velocity propagators are defined as 

 ( , , , ) exp( )pK k k ik      (21) 

and 
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where 
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Here, a new wave number filter is proposed that is defined by mapping the static wave number 

filter in the (kx,ky) domain into the (k,k) domain.  By applying Eq. (20) to Eqs. (A1) - (A4) in 

Appendix A, the wave number filter is defined as follow:   

If kc  k, 
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where 
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and 

 )3/(2 hc zk   (27) 

where zh is the hologram height.   

3 MONOPOLE SIMULATION AND EXPERIMENT 

For the purpose of validating the proposed NAH procedure in a moving fluid medium, the 

monopole simulation and experiment described in the following sections are conducted.  

3.1 Simulation and Experiment Setups 

The monopole simulation is set up to simulate the experiment shown in Figs. 2 and 3.  An 

8×5 microphone array is used for both the simulation and experiment to measure and calculate 

sound pressure data at each scanning position for 20 seconds at the sampling frequency of 8192 

Hz.  The differences between the simulation and experiment are as follow; (1) For the 

simulation, two uncorrelated monopole sources are placed at the locations of the two 

loudspeakers used in the experiment, i.e., (,,) = (0.3,0.25,-0.05) m and (0.5,0.1,-0.05) m; (2) 

Airflow speed is set up to M = -0.6 for the simulation while M = -0.12 for the experiment; (3) 

The -direction microphone spacing is d = 0.025 m in the simulation while d = 0.05 m in the 

experiment; (4) To cover the almost same measurement aperture, the total number of scans is 6 

(i.e., 8×30 measurement points) in the simulation while in the experiment, the total number of 

scans is 3 to cover the 8×15 measurement points; (5) As shown in Figs. 2 and 3, there is a hard 

surface that can be assumed as a rigid boundary in the experiment while it is assumed that there 

is no ground condition (i.e., free field) in the simulation; (6) Input signals to the loudspeakers are 

directly used as reference signals in the experiment while reference signals are calculated at the 

locations of two reference microphones closely placed at the loudspeaker locations in the 

simulation; (7) A laptop with the National Instrument (NI) LabView software along with a NI 64 

channel data acquisition system as shown in Fig. 3 are used to acquire sound pressure data in the 

experiment. 
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Figure 2: Sketch of experimental setup. 

 

 

Figure 3: Photos of experimental setup. 

3.2 Results and Discussion 

The measured sound pressure data on the hologram surface at  = 0.06 m are shown in Fig. 

4.  Figure 5 shows the imaginary part of wave number, k and the weighting function, W of the 

proposed wave number filter that is used for backward NAH projections when M = -0.6 and f = 

1.5 kHz (see Eqs. (23) and (24)).  The radiation circle in the static fluid medium case (i.e., no 

flow case) is overlaid as the black, solid-lined circle in Fig. 5.  In Fig. 5(a), the radiation ellipse 

can be identified at the edge of the supersonic region where the imaginary part of k is equal to 

zero.  Note that the center of the radiation ellipse is on the positive -axis due to the negative 

fluid flow, i.e., M = -0.6 (see Eqs. (16) and (17)).  As you can see in Fig. 5(b), the wave number 

filter that is used for a backward projection passes supersonic components while it reduces the 

most of subsonic components with the smooth transition around the edge of the radiation ellipse. 

Figure 6 shows the exact and reconstructed total sound pressure fields at f = 1.5 kHz.  The 

exact sound pressure fields are shown in Figs. 6(a) and 6(b) while the reconstructed sound 

pressure fields presented in Figs. 6(c) and 6(d).  Note the left two plots, i.e., Figs. 6(a) and 6(c) 

show the results at the source surface (i.e.,  = 0 m) while the right two plots, i.e., Figs. 6(b) and 

6(d) show the results at the sliced surface of  = 0.25 m.  As you can see, the reconstructed fields 



are almost identical with the exact fields on these two surfaces except the edges of the 

measurement aperture (see the edges of Figs. 6(a) and 6(c)).  Note that the proposed NAH 

projection requires that the measured sound pressure along the edges of the measurement 

aperture should be very small to reduce truncation errors.  However, as shown in Fig. 4, the 

sound pressure in Fig. 4 at the top and bottom edges, in particular, at (,) = (0.3,0.35) m and 

(0.5,0.0) m cannot be negligible resulting in the differences along the edges of the measurement 

aperture between the exact and reconstructed sound pressure fields. 

Figure 7 shows the sound pressure fields on the source surface at  = 0 that are reconstructed 

from experimental data when M = -0.12.  As you can see, each sound pressure field represents 

the sound pressure field radiated from one of the loudspeakers.   The locations of the highest 

sound pressure peaks in Fig. 7 are also in line with the locations of the loudspeakers.   

4 CONCLUSIONS 

In this paper, the improved NAH procedure is described that can be used to project the 

sound pressure data measured in a moving fluid medium with a uniform and subsonic velocity.  

In the latter case, a composite noise source and receiver are assumed to be not in motion.  In 

particular, the new wave number filter is proposed that is defined by mapping the static wave 

number filter.  The proposed velocity propagators are also recommended in order to include the 

mean fluid effects on reconstructed particle velocities even in the directions perpendicular to the 

flow direction.  By applying the proposed NAH procedure to the monopole simulation data at M 

= -0.6, it is shown that the proposed procedure can successfully reproduce the exact sound fields.  

Through the experiment with the two loudspeakers performed in the wind tunnel at M = -0.12, it 

is also shown that the proposed NAH procedure can be used to identify the loudspeaker locations 

and their radiation patterns.   

In the near future, it is planned to apply the proposed NAH procedure to the jet noise data 

measured on the fuselage surface of a jet aircraft during its cruise condition (e.g., at M = 0.7).  It 

is also expected to develop more applications of the proposed NAH procedure in the future. 
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Appendix A: Wave Number Filter in Static Fluid Medium 

The wave number filter proposed by Kwon
13

 is presented below: 
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and 

 )3/(2 hc zk   (A4) 

where zh is the hologram height (i.e., the distance from the source surface to measurement 

surface).  Note that the wave number filter is the function of kx and ky for a given frequency (zh is 

determined when the experiment is performed): i.e., kr is the variable, and k and kc are the 

constants for the given conditions.  

 



 

Figure 4: Measured sound pressure fields at f = 1.5 kHz on the hologram surface (monopole 

simulation at M = -0.6): (a) First sound pressure field and (b) Second sound pressure 

field. 

 

Figure 5: Two quantities in wave number domain when M = -0.6 and f = 1.5 kHz (the black, 

solid-lined circle represents the static radiation circle): (a) Imaginary part of wave 

number, k (see Eq. (23)) and (b) Weighting function, W of the proposed wave number 

filter (see Eq. (24)). 



 

 

Figure 6: Total sound pressure fields at f = 1.5 kHz (monopole simulation at M = -0.6): (a) Exact 

sound pressure field on the surface at  = 0 m, (b) Exact sound pressure field on the 

surface at  = 0.25 m, (c) Reconstructed sound pressure field on the surface at  = 0 

m, and (d) Reconstructed sound pressure field on the surface at  = 0.25 m. 

 

Figure 7: Reconstructed sound pressure fields on the source surface of  = 0 m at f = 1.5 kHz 

(experiment at M = -0.12): (a) First sound pressure field and (b) Second sound 

pressure field. 


