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In order to understand critical vibration of a drill bit such as stick-slip and bit-bounce and their

wave propagation characteristics through a drill string system, it is critical to model the torsional,

longitudinal, and flexural waves generated by the drill bit vibration. Here, a modeling method based

on a vibration transfer matrix between two sets of structural wave variables at the ends of a constant

cross-sectional, hollow, circular pipe is proposed. For a drill string system with multiple pipe

sections, the total vibration transfer matrix is calculated by multiplying all individual matrices,

each is obtained for an individual pipe section. Since drill string systems are typically extremely

long, conventional numerical analysis methods such as a finite element method (FEM) require a

large number of meshes, which makes it computationally inefficient to analyze these drill string

systems numerically. The proposed “analytical” vibration transfer matrix method requires signifi-

cantly low computational resources. For the validation of the proposed method, experimental and

numerical data are obtained from laboratory experiments and FEM analyses conducted by using a

commercial FEM package, ANSYS. It is shown that the modeling results obtained by using the

proposed method are well matched with the experimental and numerical results.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4816539]
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I. INTRODUCTION

A modeling method for predicting structural waves

propagating in a drill system is proposed in this article. The

proposed method is based on a vibration transfer matrix

approach in which a constant cross-sectional drill pipe sec-

tion is modeled by using an “analytical” vibration transfer

matrix between two sets of structural wave variables at the

two ends of the pipe section. For a drill pipe system with

multiple cross-sectional pipe sections, multiple transfer

matrices, of which each represents one constant pipe section,

are obtained. The total transfer matrix of this multi-cross-

sectional drill pipe system is then obtained by multiplying

all of the individual transfer matrices. Thus, after this matrix

multiplication, only two sets of variables at the two ends of

the multi-cross-sectional pipe system are related by the total

transfer matrix as the final form of the model equation.

Drumheller et al. investigated longitudinal waves propa-

gating in a drill pipe system by using a finite difference

method (FDM).1 Wang et al.2 applied a vibration transfer

matrix method to predict longitudinal waves in a drill pipe

system and compared their results to the FDM results in

Ref. 1. However, they investigated the only longitudinal

wave case, where a 2� 2 transfer matrix is used to describe

the wave motion in a drill pipe section.

Torsional vibration such as stick-slip vibration is con-

sidered to be one of the most common causes for drill-string

system failures. Even low-level, stick-slip vibration can be a

major cause of bit wear and reduce the speed of penetration.3

Axial vibration (i.e., longitudinal vibration) resulted from

the interaction between a drill bit and a well bottom can

cause a bit-bounce. This may result in a large fluctuation of a

weight on bit and thus may damage the tool face of the drill

bit and cause poor directional control.

In order to investigate and prevent these critical vibra-

tions, all of the flexural (i.e., lateral), torsional, and longitu-

dinal (i.e., axial) vibration modes of a drill string system

should be considered. In this article, a vibration transfer ma-

trix method to model all of the three vibration modes in

terms of their wave propagation characteristics is proposed,

while the longitudinal vibration is only considered in Refs. 1

and 2. Although various transfer matrix methods have been

widely used to determine the acoustic characteristics of

many vibro-acoustic systems such as silencers4 and poroe-

lastic materials,5 a complete vibration transfer function

including all of the three structural waves in drill string sys-

tems has not been reported before.

Here, a vibration transfer matrix from longitudinal, tor-

sional, flexural wave equations is first derived based on the

assumption that these waves are uncoupled. However, in a

real drill pipe system, these waves are weakly coupled

through the curvature of the cylinder as well as Poisson’s ra-

tio. Therefore, it is required to consider these coupling

effects to derive a more accurate “coupled” vibration transfer
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matrix than the uncoupled one. Then, another vibration

transfer matrix is derived by using a thick cylindrical shell

model to consider the coupling effects in this article. The

vibration transfer matrix derived from the thick cylindrical

shell model is reported for the first time to the best of the

authors’ knowledge.

The proposed transfer matrix approach greatly simplifies

modeling procedures and vibration analyses in a

computationally-efficient way when compared to other

approaches such as a finite element method (FEM) where an

extensively large number of finite elements (FEs) are required

to model a long pipe system. Since the structural wave varia-

bles include forces at a Bottom Hole Assembly (BHA) as well

as displacements at ground level, the proposed approach can

also be used to analyze the effects of force excitation at the

BHA on the vibration of a drill string at the ground level.

The proposed transfer matrices are validated by compar-

ing both the analytical and predicted dispersion curves of a

cylindrical pipe. As another validation case, the frequency

response functions (FRFs) obtained from the proposed trans-

fer matrices are compared to “experimental” results as well

as “numerical” results obtained by using a commercial FEM

software package, ANSYS.

II. UNCOUPLED VIBRATION TRANFER MATRIX
DERIVED FROM THREE UNCOUPLED WAVE
EQUATIONS

An uncoupled vibration transfer matrix that relates struc-

tural wave variables between two axial locations in a con-

stant-cross-sectional circular pipe or collar is derived from

three uncoupled wave equations. These uncoupled wave equa-

tions describe the longitudinal, torsional, and flexural waves

propagating in the pipe or collar. The structural wave varia-

bles used for this transfer matrix description is defined in

Fig. 1. For convenience, the subscript “1” means the variables

at z¼ 0 and the subscript “2” represents the variables at z¼L.

A. Longitudinal wave

For the system shown in Fig. 1, the longitudinal wave

equation6 can be represented as

@2uz

@z2
¼ 1

c2
L

@2uz

@t2
; (1)

where uz is the longitudinal displacement in the z-direction

[see Fig. 1(a)], cL is the longitudinal wave speed defined as

cL¼ (E/q)1/2, E is the Young’s modulus, and q is the density.

The longitudinal wave solution for Eq. (1) can then be

assumed as

uz ¼ ðCeikLz þ De�ikLzÞe�ixt; (2)

where x is the angular frequency and kL is the longitudinal

wave number defined as

kL ¼
x
cL
: (3)

In the solution of Eq. (2), it is assumed that only plane wave is

propagating through the drill pipe section, which is valid in low

frequencies where higher cross-sectional wave modes decay

out exponentially and can thus be negligible. Most of the drill

string failures occur in this low frequency range. By plugging

the wave solution of Eq. (2) into the longitudinal wave equation

and using the axial force and displacement relation, Nzz

¼ �EA@uz/@z, the relations between the z-direction displace-

ments and the axial forces at z¼ 0 and L can be obtained as

uz2ðxÞ ¼
1

2
ðeikLL þ e�ikLLÞuz1ðxÞ

� 1

2kLEAi
ðeikLL � e�ikLLÞNzz1ðxÞ; (4)

Nzz2ðxÞ ¼ �
1

2
kLEAiðeikLL � e�ikLLÞuz1ðxÞ

þ 1

2
ðeikLL þ e�ikLLÞNzz1ðxÞ; (5)

where A is the cross-sectional area. In Eqs. (4) and (5), the

axial displacements and forces are the functions of angular

frequency and wavenumber. For different dimensions and ma-

terial properties of a pipe or collar, the modeling parameters,

E, A, cL (or q), and L can be modified in Eqs. (4) and (5).

FIG. 1. Vibration variables: (a) Longitudinal and torsional waves and (b) flexural waves.
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B. Torsional wave

The torsional wave equation6 can be expressed as

@2bh

@z2
¼ 1

c2
T

@2bh

@t2
; (6)

where bh is the torsional angular displacement [see Fig.

1(a)], cT is the torsional wave speed defined as cT¼ (G/q)1/2,

and G is the shear modulus. Similar to the procedure in Sec.

II A, by using T¼�J@bh/@z, the relations between the tor-

sional moments and the angular displacements at z¼ 0 and L
can be obtained as

bh2ðxÞ ¼
1

2
ðeikT L þ e�ikT LÞbh1ðxÞ

� 1

2kTJi
ðeikT L � e�ikT LÞT1ðxÞ; (7)

T2ðxÞ ¼ �
1

2
kTJiðeikT L � e�ikT LÞbh1ðxÞ

þ 1

2
ðeikT L þ e�ikT LÞT1ðxÞ; (8)

where J is the torsional rigidity of the system and kT is the

torsional wave number defined as

kT ¼
x
cT
: (9)

C. Flexural wave

Based on the Euler-Bernoulli beam theory, the flexural

wave equation7 can be obtained as

EIFR
@4ur

@z4
þ qA

@2ur

@t2
¼ 0; (10)

where ur is the transverse displacement [see Fig. 1(b)] and

IFR is the area moment of inertia. Then, the relation of the

flexural wave variables at z¼ 0 and L is expressed as

ur2

bz2

Mzz2

Qzr2

2
664

3
775 ¼ A

ur1

bz1

Mzz1

Qzr1

2
664

3
775 ¼

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

2
664

3
775

ur1

bz1

Mzz1

Qzr1

2
664

3
775;

(11)

where

bz ¼
@ur

@z
; (12)

Mzz ¼ EIFR
@2ur

@z2
; (13)

Qzr ¼ �EIFR
@3ur

@z3
; (14)

a11 ¼
1

4
ðeikFRL þ e�ikFRL þ ekFRL þ e�kFRLÞ ; a12 ¼

1

4kFR
ð�ieikFRL þ ie�ikFRL þ ekFRL � e�kFRLÞ;

a13 ¼
1

4EIFRk2
FR

ð�eikFRL � e�ikFRL þ ekFRL þ e�kFRLÞ; a14 ¼
1

4EIFRk3
FR

ð�ieikFRL þ ie�ikFRL � ekFRL þ e�kFRLÞ;

a21 ¼
kFR

4
ðieikFRL � ie�ikFRL þ ekFRL � e�kFRLÞ; a22 ¼

1

4
ðeikFRL þ e�ikFRL þ ekFRL þ e�kFRLÞ;

a23 ¼
1

4EIFRkFR
ð�ieikFRL þ ie�ikFRL þ ekFRL � e�kFRLÞ ; a24 ¼

1

4EIFRk2
FR

ðeikFRL þ e�ikFRL � ekFRL � e�kFRLÞ;

a31 ¼
EIFRk2

FR

4
ð�eikFRL � e�ikFRL þ ekFRL þ e�kFRLÞ; a32 ¼

EIFRkFR

4
ðieikFRL � ie�ikFRL þ ekFRL � e�kFRLÞ;

a33 ¼
1

4
ðeikFRL þ e�ikFRL þ ekFRL þ e�kFRLÞ ; a34 ¼

1

4kFR
ðieikFRL � ie�ikFRL � ekFRL þ e�kFRLÞ;

a41 ¼
EIFRk3

FR

4
ðieikFRL � ie�ikFRL � ekFRL þ e�kFRLÞ ; a42 ¼

EIFRk2
FR

4
ðeikFRL þ e�ikFRL � ekFRL � e�kFRLÞ;

a43 ¼
kFR

4
ð�ieikFRL þ ie�ikFRL � ekFRL þ e�kFRLÞ; a44 ¼

1

4
ðeikFRL þ e�ikFRL þ ekFRL þ e�kFRLÞ; (15)

kFR ¼
qAx2

EIFR

� �1=4

: (16)

D. Vibration transfer matrix

By rewriting Eqs. (4), (5), (7), (8), and (11) in a matrix

form, the vibration transfer matrix T describing the

longitudinal, torsional, and flexural wave propagations in the

pipe or collar can be obtained as

Uz¼L ¼ A ~0
~0 B

" #
Uz¼0 ¼ TUz¼0; (17)

where
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U ¼ ½ur bz Mzz Qzr bh T uz Nzz�T; (18)

B ¼

1

2
ðeikT L þ e�ikT LÞ � 1

2kTJi
ðeikT L � e�ikT LÞ 0 0

� 1

2
kTJiðeikT L � e�ikT LÞ 1

2
ðeikT L þ e�ikT LÞ 0 0

0 0
1

2
ðeikLL þ e�ikLLÞ � 1

2kLEAi
ðeikLL � e�ikLLÞ

0 0 � 1

2
kLEAiðeikLL � e�ikLLÞ 1

2
ðeikLL þ e�ikLLÞ

2
6666666664

3
7777777775
: (19)

In Eq. (17), the matrix A is defined in Eq. (11).

Since the individual vibration transfer matrix T of a sin-

gle pipe or collar section is a function of its dimensions and

material properties regardless of the boundary conditions,

the total vibration transfer matrix of a drill pipe system that

consists of multiple pipes and collars can be determined by

multiplying all of the individual vibration transfer matrices.

Therefore, once a measurement is made at one end of the

combined drill pipe system, the structural wave variables at

the other end can be estimated from the total vibration trans-

fer matrix without making a measurement at this end.

E. Structural damping

The vibration transfer matrix derived in Secs. II A–II D

does not include the effects of structural damping. Thus,

some wave types in this structural-damping-free system do

not decay out, which is physically impossible in reality. In

order to include structural damping effects, the “complex”

Young’s modulus7 is here defined as

�E ¼ Eð1 6 giÞ; (20)

where g is the structural damping coefficient and E is the

Young’s modulus. The sign of the structural damping depends

on the sign convention of the exponential time function, e.g.,

exp(�ixt). In this article, since exp(ikx�ixt) is defined as the

positive-propagating exponential wave component, the nega-

tive sign of g in Eq. (20) represents an exponentially-decaying

wave component; e.g., the positive sign of g generates an

exponentially-increasing wave component as the wave propa-

gates, which is not physically meaningful.

The structural damping coefficient can be calculated by

measuring the viscous damping ratio n and using the relation

between the structural damping coefficient and the viscous

damping ratio;8,9 i.e.,

g ¼ 2n: (21)

The viscous damping ratio n can be measured by using the

half power method.10

III. COUPLED VIBRATION TRANSFER MATRIX
DERIVED FROM SHELL EQUATIONS

Based on the assumption that the flexural, longitudinal,

and torsional wave modes are uncoupled to each other, the

uncoupled vibration transfer matrix is derived from the

uncoupled wave equations in Sec. II. However, in a real drill

pipe system, these wave modes are coupled due to the pipe’s

curvature as well as Poisson’s ratio. Therefore, the coupling

effects are considered to derive an accurate “coupled” vibra-

tion transfer matrix in this section. Here, the coupled vibra-

tion transfer matrix is proposed to be derived from a “thick”

cylindrical shell model.

A. Wave propagation characteristics in a thick
cylindrical shell

When the thickness of a cylindrical shell is thin, only

three governing equations are needed to describe the vibra-

tion motion of a shell in terms of displacements, ur, uh, and

uz.
11,12 For a thick cylindrical shell such as typical drill pipes

of which thickness is so thick that shear deformation and ro-

tary inertia cannot be negligible, the rotating angles of bh

and bz (see Fig. 1) cannot be expressed in terms of the dis-

placements ur, uh, and uz. Thus, two additional equations are

required to calculate these two rotating angles. The five gov-

erning equations12 to describe the motion of this thick shell

structure including the shear deformation and the rotary iner-

tia are expressed as

k0Gh

a

@erh

@h
þ k0Gh

@erz

@z
� Nhh

a
� qh

@2ur

@t2
¼ 0; (22)

1

a

@Nhh

@h
þ @Nhz

@z
þ k0Gherh

a
� qh

@2uh

@t2
¼ 0 ; (23)

1

a

@Nhz

@h
þ @Nzz

@z
� qh

@2uz

@t2
¼ 0; (24)

@Mzh

@z
þ 1

a

@Mhh

@h
� k0Gherh �

qh3

12

@2bh

@t2
¼ 0 ; (25)

@Mzz

@z
þ 1

a

@Mhz

@h
� k0Gherz �

qh3

12

@2bz

@t2
¼ 0 ; (26)

where u is the displacement in the direction denoted by

its subscript (see Fig. 1), Nij (i, j¼ r, h, z) is the in-plane

force (see the appendix for the relation between displace-

ments, forces, and moments), and k0 is the shear coefficient.

The shear coefficient can be expressed for a circular

pipe as13
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k0 ¼
6ð1þ lÞ 1þ ri

ro

� �2
 !2

ð7þ 6lÞ 1þ ri

ro

� �2
 !2

þ ð20þ 12lÞ ri

ro

� �2
;

(27)

where ri and ro are the inner and outer radii of the circular

pipe, respectively, and l is the Poisson’s ratio. Then the

assumed wave solutions of Eqs. (22)–(26) for a harmonic ex-

citation can be written as

ur ¼ Ure
inheikze�ixt; (28)

uh ¼ Uheinheikze�ixt; (29)

uz ¼ Uze
inheikze�ixt; (30)

bh ¼ Bheinheikze�ixt; (31)

bz ¼ Bze
inheikze�ixt: (32)

By plugging Eqs. (28)–(32) into Eqs. (22)–(26), an eigen-

value problem can be formulated as

Z½Ur Uh Uz Bh Bz �T ¼ 0; (33)

where

Zðk;xÞ ¼

a1k2þ a2� qhx2 a3 a4k a5 a6k
a3 a7k2þ a8þ qhx2 a9k a10 0

a4k a9k �Kk2þ a11þ qhx2 0 0

a5 a10 0 a12k2þ a13þ
qh3

12
x2 a14k

a6k 0 0 a14k �Dk2þ a15þ
qh3

12
x2

2
666666664

3
777777775
;

(34)

a1 ¼ k0Gh; a2 ¼
k0Gh

a2
n2 þ K

a2
; a3 ¼

k0Gh

a2
ni� K

a2
ni; a4 ¼

lK

a
i; a5 ¼ �

k0Gh

a
n; a6 ¼ �k0Ghi;

a7 ¼ �
Kð1� lÞ

2
; a8 ¼ �

K

a2
n2 � k0Gh

a2
; a9 ¼ �

Kð1þ lÞ
2a

n; a10 ¼
k0Gh

a
; a11 ¼ �

Kð1� lÞ
2a2

n2;

a12 ¼ �
Dð1� lÞ

2
; a13 ¼ �

D

a2
n2 � k0Gh; a14 ¼ �

Dð1þ lÞn
2a

; and a15 ¼ �n2 Dð1� lÞ
2a2

� k0Gh: (35)

For a non-trivial solution, the determinant of the matrix Z in

Eq. (33) should be zero. The latter equation is expressed as a

tenth-order polynomial equation and referred to as the char-

acteristic or dispersion equation; i.e.,

jZðk;xÞj ¼ 0: (36)

By setting n¼ 0 and solving Eq. (36), the dispersion rela-

tions (i.e., k-x relations) for the longitudinal and torsional

waves can be obtained as shown in Fig. 2. The material prop-

erties of the drill pipe used for Figs. 2–4 are presented in the

second column of Table I. At each frequency x, there are

ten roots of k satisfying Eq. (36). When the structural damp-

ing is ignored, four of these roots are purely real numbers.

These wavenumbers are associated with positive- and

negative-going longitudinal and torsional waves depending

on the sign and wave speed of each dispersion curve. The

positive wavenumbers represent the positive-going waves

and the negative wavenumbers, the negative-going waves.

The other six complex roots are almost constant independent

of frequency and can be ignored due to their extremely large

imaginary parts (e.g., k¼6275.8i, 648.6 6 53.7i rad/m):

They are exponentially decaying out extremely quickly.

Since the dispersion curves are symmetric with respect to

the k¼ 0 axis, Fig. 2 shows the only positive wavenumbers.

It is shown that in Fig. 2, the dispersion curves obtained

from the shell equations are well in line with the uncoupled,

FIG. 2. (Color online) Dispersion relations for n¼ 0 longitudinal and

torsional wave modes.
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analytical dispersion curves [i.e., x¼ (E/q)0.5k and

x¼ (G/q)0.5k]. Thus, it can be concluded that the coupling

effects between the longitudinal and torsional waves in the

shell model can be ignored in the frequency range up to 1

kHz for the pipe in the second column of Table I.

Similarly, for n¼ 1, the dispersion relation of the flex-

ural wave can be also derived from Eq. (36). In this case,

among the ten roots of Eq. (36), two wavenumbers with zero

imaginary parts are associated with both positive- and

negative-going flexural waves. Here, the only positive wave-

number is plotted in Fig. 3 since the two real wavenumbers

are symmetric with respect to the k¼ 0 axis. In addition to

the two real wavenumbers, two imaginary wavenumbers

with the same magnitude as the real wavenumbers can be

obtained that are associated with evanescent flexural waves.

The rest six complex roots have large imaginary parts (e.g.,

k¼6276.1i, 646.5 6 55.8i rad/m) and can be ignored since

they are decaying out extremely quickly or increasing expo-

nentially. As shown in Fig. 3, the dispersion curve for the

flexural wave obtained by using the shell model is compared

with that of the uncoupled, analytical model [i.e.,

x¼ (EI/qA)0.5k2]. In the low frequencies below 200 Hz, the

wavenumbers predicted by using the shell model match well

with those of the uncoupled, analytical model. As the fre-

quency increases, the discrepancy between the two models

increases since the uncoupled, analytical model is valid for

only thin beams in low frequencies where the wavelengths

are much larger than the cross-sectional dimensions. Since

the cut-off frequencies of higher modes (i.e., n is equal to or

larger than 2) are higher than 1.3 kHz for the given material

properties as shown in Fig. 4, the higher modes are not taken

into account in this article.

B. Coupled vibration transfer matrix based on a thick
cylindrical shell model

As discussed in Sec. III A, two longitudinal wavenum-

bers, kLþ and kL�, two torsional wavenumbers, kTþ and kT�,

and four flexural wavenumbers, kFRþ, kFR�, kFIþ, and kFI�
can be obtained from Eq. (36) at a single frequency. These

wavenumbers can be referred to as the eigenvalues of the

eigenvalue problem in Eq. (33). The corresponding eigen-

vector, U¼ [Ur Uh Uz Bh Bz]
T can then be obtained from Eq.

(33) at each frequency and wavenumber. Then, a harmonic

wave solution, u¼ [ur uh uz bh bz]
T can be expressed by

using a superposition of the wave modes represented in

terms of the eigenvalues and eigenvectors as

uðr ¼ a; h; z; tÞ ¼ ½ðAþUFRþeikFRþz þ A�UFR�eikFR�z

þ BþUFIþeikFIþz þ B�UFI�eikFI�zÞeih

þCþUTþeikTþz þ C�UT�eikT�z

þ DþULþeikLþz þ D�UL�eikL�z�e�ixt :

(37)

By using the relation12 of Qzr¼ k0hGerz, the superposition

coefficients in Eq. (37) at z¼ 0 can be rewritten in a matrix

form as

C0 ¼ T�1
1 Xz¼0; (38)

where

X ¼ ½ ur bz Mzz Qrz bh T uz Nzz �T; (39)

C0 ¼ ½Aþ A� Bþ B� Cþ C� Dþ D��T: (40)

When z¼L, Eq. (37) leads to

Xz¼L ¼ T1 T2C0: (41)

By plugging Eq. (38) into Eq. (41), the coupled vibration

transfer matrix, T between z¼ 0 and z¼L that describes the

FIG. 3. (Color online) Dispersion relations for n¼ 1 flexural wave mode.

FIG. 4. (Color online) Dispersion relations for n¼ 2 and n¼ 3 modes.

TABLE I. Material properties and diameters of drill pipe system for experi-

mental setup in Fig. 5.

Pipe Collar

Young’s modulus [Pa] 2.08� 1011

Density [kg/m3] 7856

Structural damping coefficient 0.0044

Poisson’s ratio 0.3

Outer diameter [mm] 73.03 104.78

Inner diameter [mm] 54.65 50.8
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longitudinal, torsional, and flexural waves propagating in the

pipe or collar, can be obtained as

T ¼ T1 T2T�1
1 : (42)

IV. EXPERIMENT AND FE ANALYSES FOR
VALIDATION

An experiment and FE analyses are conducted to vali-

date the proposed transfer matrix approaches.

A. Experiments

Figure 5 shows the experimental setup. The material

properties and the inner and outer diameters of the drill pipe

are presented in Table I. As shown in Fig. 5, the two drill

pipe sections, with the same cross-section, which are con-

nected with a collar in the middle, is hanged by using two

steel cables at z¼ 2.94 and 6.8 m. These hanging positions

are determined arbitrarily with the assumption that these

cables are negligibly affecting the vibration responses of the

pipe although they actually affect the flexural vibration

responses in low frequencies (e.g., below 200 Hz), which

will be discussed in Sec. V. A Br€uel & Kjær (B&K, Naerum,

Denmark) type 8206 impact hammer is used to excite the

left end of the drill pipe. Flexural waves are generated by

applying a vertical force to the pipe end by using the impact

hammer. For an axial impact force to generate longitudinal

waves, a circular cover is glued at the left end and the impact

hammer is used to excite the center of the circular cover. A

B&K PULSE system (Model: 3560-B-130) is used to record

acceleration data with a PCB Piezotronics (Buffalo, NY)

“triaxial” accelerometer (Model: 356A24). For each axial or

transversal excitation case, acceleration data at the four mea-

surement points, z¼ 0, 2.13, 4.84, and 9.75 m as indicated in

Fig. 5, are recorded for 8 s at the sampling frequency of 1600

Hz. The measured data at a measurement location include

the three-directional accelerations; i.e., axial, radial (or trans-

versal), and circumferential directions. For each of the axial

or transversal excitation, the same measurement is repeated

five times. Then, the five spectral data obtained by applying

the discrete Fourier transform (DFT) to the acceleration data

are linearly averaged to obtain an averaged acceleration

spectrum in the axial or transversal direction. Then, the

FRFs at the four measurement locations are estimated from

the measured acceleration spectra.

Regarding the material properties in Table I, viscous

damping coefficients are obtained by applying the half power

method10 [i.e., f¼ (x2 � x1)/2xn, where x2 and x1 are fre-

quencies at half power points and xn is a resonance frequency]

to each resonance peak below 300 Hz for the longitudinal and

flexural excitation cases at z¼ 0, 0.219 L, 0.5L, and L (L¼ 9.74).

The measured damping coefficients are then spatially averaged

over all of the measurement locations. Finally, by applying

Eq. (21) and averaging over all of the resonance frequencies,

the single structural damping coefficient in Table I is obtained.

As shown in Table II for the flexural excitation case, although

the damping coefficients are slightly frequency-dependent, a

frequency-independent structural damping model with the

damping value of 0.0044 is used for all of the models in this

article otherwise specified. The density in Table I is given by

the manufacturer, TSC Drill Pipe, Inc. (Houston, TX). The

Young’s modulus is determined by optimally fitting the experi-

mental and predicted first natural frequencies (i.e., 278.5 Hz)

for the longitudinal excitation case. The estimated value of

208 GPa is close to the Young’s modulus of a standard steel

(i.e., 30� 106 psi or 200–210 GPa).

B. Existing experimental data

In addition to conducting the experiments as described

in Sec. IV A, the existing experimental data presented in

Ref. 1 is also used to validate the proposed transfer matrix

approaches. The experimental setup in Ref. 1 is presented in

FIG. 5. Experimental setup.

TABLE II. Resonance peak frequencies and damping coefficients.

Structural damping coefficient

Longitudinal excitation case Resonance frequency [Hz] 278.5 0.0044

Spatially averaged viscous damping 0.0022

Flexural excitation case Resonance frequency [Hz] 31.1 68.4 85.4 109.6 140.4 178.3 256.9 0.0044

Spatially averaged viscous damping 0.0034 0.0039 0.0016 0.0011 0.0013 0.0023 0.0018
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Fig. 6. The material properties and geometry information of

the scaled drill pipe system in Ref. 1 are listed in Table III.

As shown in Fig. 6, the nine copper collars are soldered to

the ends of 0.457 m copper pipes and an axial impulse force

is generated by dropping the string-suspended mass block.

The two sets of two strain gauges are installed at the two

axial locations of 0.102 m measured from both ends of the

scaled pipe system. These strain gauges are used to record

circumferentially symmetric strains (i.e., in-phase, longitudi-

nal strains).

C. Finite element analyses

The results of FE analyses obtained by using a commer-

cial FE software package, ANSYS, are also used to validate

the proposed methods. In particular, torsional wave cases are

validated only with the FE results since it is difficult to gen-

erate pure torsional waves experimentally. The material

properties and the inner and outer diameters listed in Table I

are used to build a FE model of the pipe system in Fig. 5.

The FE model consists of 15 443 nodes and 7871 solid ele-

ments of SOLID187. This FE geometry gives the maximum

axial space of 0.09 m between two adjacent nodes. Since the

maximum frequency of interest is 500 Hz and the slowest

wave speed at the maximum frequency is 610 m/s, the maxi-

mum space guarantees 13.5 nodes per one wavelength of the

slowest wave, which is a sufficiently large number of nodes

to obtain an accurate FE result. For the axial, torsional, and

transversal excitation, an axial force of 1 N, a torsional

moment of 1 N�m, and a vertical force of 1 N are applied at

the left-end surface, respectively. By using a harmonic anal-

ysis FE solver, acceleration data at the four experimental

measurement locations (see Fig. 5) are calculated up to

500 Hz with a 2 Hz frequency resolution. The calculated

accelerations are equivalent to FRFs since the unit force or

moment is applied as the input.

V. RESULTS AND DISCUSSION

Figure 7 shows the experimental, longitudinal strain

results presented in Ref. 1 (see also Sec. IV B). The meas-

ured results are compared to the temporal strain results

obtained by using the uncoupled and coupled transfer matri-

ces. The input forces for the transfer matrix approaches are

obtained from the measured strain data at the left measure-

ment location after multiplying EA (i.e., Nzz¼EA@uz/@z
¼EAe). Similarly, the output strain data in the transfer

matrix approaches at the right measurement location are cal-

culated from the forces obtained from the proposed transfer

matrices and divided by EA (i.e., e¼ @uz/@z¼Nzz/EA). It is

shown that in Fig. 7, the temporal strain results predicted by

using both the uncoupled and coupled transfer matrix

approaches match well with the measured data. In addition,

the results of the two transfer matrix approaches in Fig. 7 are

almost identical for this pure longitudinal wave propagation

case.

For the “longitudinal” excitation cases described in

Fig. 5 and Sec. IV A, the FRFs, in Fig. 8, estimated by using

the proposed transfer matrix methods and the ANSYS analy-

ses agree well with the measured FRF results except the val-

ley locations in Figs. 8(a) and 8(b) approximately at 140,

160, and 380 Hz. The measured anti-resonance amplitudes

are expected to be inaccurate due to the low signal-to-noise-

ratio at these anti-resonance frequencies and the high

FIG. 7. (Color online) Comparison of longitudinal strain wave data pre-

sented in Ref. 1 and obtained by using vibration transfer matrices at strain

gauge location in Fig. 7.

TABLE III. Material properties and diameters of scaled drill pipe system in

Ref. 1.

Pipe Collar

Young’s Modulus [Pa] 1.18� 1011

Density [kg/m3] 8960

Outer diameter [mm] 6.4 10.26

Inner diameter [mm] 5.08 6.4

Length [mm] 431.8 25.4

FIG. 6. Experimental setup in Ref. 1.
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sensitivity of accelerometer placement error on the anti-

resonance amplitudes. Although the first resonant amplitude

at approximately 280 Hz is consistent throughout all of the

results, the second resonant amplitude at approximately

470 Hz is underestimated with all of the predicted results.

This may be caused by the overestimation of the damping

value at this second resonance frequency where the reso-

nance amplitude is significantly sensitive to the damping

value. In order to investigate this problem in detail, two

structural damping coefficients of 0.0044 and 0.00038 are

FIG. 9. (Color online) Experimental and predicted FRF results for the case of longitudinal excitation with two different damping coefficients of 0.0044 (from

1 to 370 Hz) and 0.00038 (from 371 to 500 Hz) (L¼ 9.74 m): (a) z¼ 0, (b) z¼ 0.219 L, (c) z¼ 0.5 L, and (d) z¼L.

FIG. 8. (Color online) Experimental and predicted FRF results for the case of longitudinal excitation (L¼ 9.74 m): (a) z¼ 0, (b) z¼ 0.219 L, (c) z¼ 0.5 L, and

(d) z¼L.
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applied to two different frequency bands; i.e., the damping

coefficient of 0.0044 that is identified by using the half

power method at 280 Hz is applied from 1 to 370 Hz and the

coefficient of 0.00038 identified at 470 Hz, from 371 to

500 Hz. As shown in Fig. 9, the predicted second resonant

amplitudes increase with the smaller damping value, which

make the predicted results more consistent with the experi-

mental results than the constant damping cases in Fig. 8.

For the “torsional” excitation case described in Fig. 5

and Sec. IV C, the FRFs obtained from the proposed transfer

matrix methods agree well with the ANSYS analysis results

in Fig. 10.

FIG. 11. (Color online) Experimental and predicted FRF results for flexural excitation (L¼ 9.74 m): (a) z¼ 0, (b) z¼ 0.219 L, (c) z¼ 0.5 L, and (d) z¼L.

FIG. 10. (Color online) Experimental and predicted FRF results for torsional excitation (L¼ 9.74 m): (a) z¼ 0, (b) z¼ 0.219 L, (c) z¼ 0.5 L, and (d) z¼L.
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For the “flexural” excitation case in Fig. 11, at low fre-

quencies (e.g., below 100 Hz), the boundary condition in the

experiment cannot be assumed as a free-free boundary con-

dition since the drill pipe is hanged by the two steel cables as

shown in Fig. 5, while the predicted results are based on the

free-free boundary condition. Therefore, there are some dis-

crepancies between the measured and predicted results in the

low frequencies. However, above 100 Hz, the discrepancies

become negligible, resulting in the predicted FRF results

matched well with the measured results. As shown in Fig. 3,

as the frequency increases, the analytical solution based on

the Bernoulli-Euler beam theory results in lower wavenum-

bers (i.e., higher stiffness) than the thick-shell model.

Therefore, the resonance frequencies estimated by using the

analytical, uncoupled approach are higher than those of the

thick-shell-theory-based, coupled transfer matrix and experi-

mental approaches in Fig. 11. At high frequencies above 250

Hz, the FRFs predicted from the coupled vibration transfer

matrix are better fitted to the measured results than those

from the uncoupled vibration transfer matrix.

For the purpose of evaluating the performance of each

modeling approach, Table IV presents resonance peak fre-

quencies and relative errors of the predicted results from the

baseline frequencies. It is shown that in general, the coupled

transfer approach has the minimum relative error. It is note-

worthy that the coupled vibration transfer matrix approach

with the 1.84% relative error generates more closely

matched torsional results to the ANSYS results than the

uncoupled method with the 2.49% relative error. For the

flexural excitation case, the uncoupled vibration transfer ma-

trix approach results in the better matched results to the

measured results with the 1.61% relative error than the other

two approaches with the relative errors of 1.96% and 2.61%.

As shown in the flexural excitation case of Table IV, the

ANSYS model slightly overestimates the natural frequencies

systematically. For the purpose of investigating the potential

TABLE V. Estimated resonance peak frequencies according to number of node in ANSYS.

# of nodes Resonance frequency [Hz] Averaged relative error [%]

Longitudinal excitation case Experiment 279 470 Baseline

5372 279 471 0.11

9774 278 467 0.50

15443 279 464 0.64

18399 274 485 2.49

66958 275 485 2.31

Torsional excitation case Experiment 179 274 Baseline

5372 197 307 11.05

9774 182 282 2.30

15443 179 275 0.18

18399 183 289 3.85

66958 174 277 1.94

Flexural excitation case Experiment 110 140 178 209 257 297 350 396 457 Baseline

5372 91 127 164 213 268 325 392 483 - N/A

9774 113 141 183 216 269 307 370 415 487 3.86

15443 112 139 181 214 264 303 365 409 478 2.61

18399 107 134 172 204 251 289 345 388 451 2.51

66958 106 133 170 202 248 285 340 382 446 3.64

TABLE IV. Resonance peak frequencies and frequency differences.

Resonance frequency [Hz] Averaged relative error [%]

Longitudinal excitation case Experiment 279 470 Baseline

Uncoupled 279 465 0.53

Coupled 279 465 0.53

ANSYS 279 464 0.64

Torsional excitation case ANSYS 179 274 Baseline

Uncoupled 174 268 2.49

Coupled 175 270 1.84

Flexural excitation case Experiment 110 140 178 209 257 297 350 396 457 Baseline

Uncoupled 111 139 178 212 263 300 364 404 481 1.96

Coupled 108 136 174 206 255 290 351 388 460 1.61

ANSYS 112 139 181 214 264 303 365 409 478 2.61
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stiffening effects of the FE model with an insufficient num-

ber of nodes, a convergence test is performed by increasing

the number of nodes. As shown in Table V, the ANSYS

model becomes softer as the number of nodes increases, in

particular, for the flexural excitation case in high resonance

frequencies. Based on all of the results in Table V, the total

node number of 15 443 is selected as an optimal node num-

ber in terms of computational accuracy and efficiency to

generate all of the ANSYS prediction results in this article.

VI. CONCLUSION

In this paper, the uncoupled and coupled vibration trans-

fer matrices are derived in order to analytically estimate the

longitudinal, torsional, and flexural waves propagating

through long drill strings in a computationally-efficient way.

The uncoupled transfer matrix is here derived from the three

uncoupled wave equations. Since the wave modes are

weakly coupled in reality, the vibration transfer matrix

including the coupling effects is derived from the thick cir-

cular cylindrical shell model. The proposed methods are

validated experimentally and numerically. Through the com-

parison between the measured and predicated results, it is

shown that the simplistic uncoupled transfer matrix approach

can be used to accurately predict the critical vibrations of a

drill pipe system such as stick-slip and bit-bounce below

500 Hz for the drill strings considered in this article,

although the coupled transfer matrix approach can generate

better results than the uncoupled transfer matrix approach, in

particular, for estimating the torsional and flexural vibration.
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APPENDIX: RELATION BETWEEN DISPLACEMENTS,
FORCES, AND MOMENTS

The in-plan force, N and the moment, M in Eqs.

(22)–(26) are represented as

Nhh ¼ Kðe0
hh þ le0

zzÞ; Nzz ¼ Kðe0
zz þ le0

hhÞ;

Nhz ¼
Kð1� lÞ

2
e0
hz; (A1)

Mhh ¼ Dðkhh þ lkzzÞ; Mzz ¼ Dðkzz þ lkhhÞ;

Mhz ¼
Dð1� lÞ

2
khz; (A2)

where the membrane strains and the curvatures are defined as

e0
hh ¼

1

a

@uh

@h
þ ur

a
; e0

zz ¼
@uz

@z
; e0

hz ¼
1

a

@uz

@h
þ @uh

@z
;

(A3)

erh ¼
1

a

@ur

@h
� uh

a
þ bh; erz ¼

@ur

@z
þ bz; (A4)

khh ¼
1

a

@bh

@h
; kzz ¼

@bz

@z
; khz ¼

1

a

@bz

@h
þ @bh

@z
: (A5)

In Eqs. (A1) and (A2), K and D is the membrane stiffness

and the bending stiffness defined as

D ¼ Eh3

12ð1� l2Þ ; (A6)

K ¼ Eh

1� l2
; (A7)

where l and h are Poisson’s ratio and thickness, respectively.
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