
Contents lists available at SciVerse ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 332 (2013) 952–967
0022-46

http://d

$ Por

Proceed
n Corr

E-m
journal homepage: www.elsevier.com/locate/jsvi
Nonlinear, dissipative, planar Nearfield Acoustical Holography
based on Westervelt wave equation$
Yaying Niu, Yong-Joe Kim n

Acoustics and Signal Processing Laboratory, Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX 77843-3123, USA
a r t i c l e i n f o

Article history:

Received 17 June 2012

Received in revised form

11 September 2012

Accepted 21 September 2012
Handling Editor: K. Shin
introduced that can be used to identify nonlinear noise characteristics in the 3-D
Available online 24 October 2012
0X/$ - see front matter & 2012 Elsevier Ltd.

x.doi.org/10.1016/j.jsv.2012.09.023

tions of this work are published in ‘‘Nonlinea

ings of INTER-NOISE 2012, IN12-663, New Y

esponding author. Tel.: þ1 979 845 9779; fa

ail addresses: y-niu@tamu.edu (Y. Niu), joekim
a b s t r a c t

When a conventional, linear, lossless Nearfield Acoustical Holography (NAH) procedure

is applied to reconstruct three-dimensional (3-D) sound fields that are radiated from a

high-level noise source and include significant nonlinear components, it can result in

significant reconstruction errors. Here, a nonlinear, dissipative, planar NAH procedure is

nearfield of a high-level noise source from two-dimensional (2-D) sound pressure data

measured on a hologram surface. The proposed NAH procedure is derived by applying

perturbation and renormalization methods to the nonlinear, dissipative Westervelt

wave equation. In order to validate the proposed procedure, the nonlinear and

dissipative sound pressure fields radiated from a high-level pulsating sphere and an

infinite-size, vibrating panel are calculated from the Burgers equations in the spherical

and rectangular coordinates, respectively. An improved SONAH procedure is applied to

reconstruct source sound pressure fields that are input to the proposed nonlinear NAH

projection procedure. Within 2.5 m nearfield reconstruction distance from the pulsating

sphere, the nonlinear sound pressure field reconstructed by applying the proposed NAH

procedure matches well with the directly-calculated field at the maximum reconstruc-

tion error of 0.6 dB. In the infinite-size panel case, the reconstructed nonlinear sound

pressure field agrees also well with the directly-calculated result with the maximum

reconstruction error of 1 dB.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

For the purpose of identifying sound sources and visualizing their sound radiation patterns in a three-dimensional (3-D)
space, a Nearfield Acoustical Holography (NAH) procedure can be used to linearly project the sound pressure data measured on
a two-dimensional (2-D) measurement surface (i.e., hologram surface) into a 3-D space. The NAH procedure that includes
evanescent wave components (i.e., subsonic wave components) to improve the spatial resolution of a reconstructed sound field
was first introduced by Williams et al. in 1980s [1–3]. Since then, many researchers have improved the NAH procedure and
applied the improved procedures to various vibroacoustic and aeroacoustic problems although their applications are limited to
‘‘linear’’ acoustic problems [4–10].
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The sound fields radiated from high-level noise sources include significant nonlinear components that can lead to shock
wave propagations. Thus, it is critical to identify noise propagation characteristics in the nearfield of the sources in order to
design optimal noise control schemes to suppress the nonlinear noise components before they turn into shock waves.
However, the conventional, linear, lossless NAH procedures in Refs. [1–10] cannot be used to visualize the highly nonlinear
and dissipative sound fields correctly. Therefore, it is here proposed to develop a novel, nonlinear, dissipative, planar NAH
procedure to consider the nonlinear and thermoviscous effects. Combined with a linear and lossless NAH procedure, the
proposed NAH procedure can be used to nonlinearly project the sound pressure data measured on a 2-D planar
measurement surface close to the noise sources into a 3-D space to visualize both linear and nonlinear acoustic fields.

Hamilton and Blackstock [11] summarized nonlinear acoustics research work done by many researchers [12–21]. In
particular, Ginsberg [15–18] and Nayfeh [19–21] used perturbation and renormalization methods to investigate nonlinear
acoustic wave propagations in planar, cylindrical, and spherical cases. According to their investigations on 2-D planar
nonlinear wave propagation based on the perturbation and renormalization procedures, particle velocity components
along a wave propagating direction can advance or retard wavefronts, while the transverse particle velocity components
can bend the rays of the nonlinear waves [15,16,19,20]. For a spherical wave, however, transverse particle velocity decays
in proportional to 1/r compared to the radial velocity [21]. Thus, the bending of the spherical wave ray is negligible and the
ray remains straight. For a 1-D nonlinear planar wave, the transverse particle velocity is zero and thus the ray is straight
along the wave propagating direction.

Among nonlinear and thermoviscous acoustic equations for perfect gases [11], the Westervelt wave equation (WWE)
[11,13] is selected to derive the proposed nonlinear and dissipative NAH procedure. The WWE is solved by using
perturbation and modified renormalization methods to give linear and nonlinear NAH reconstructed sound pressure fields
that include the nonlinearity-induced steepening effects of wavefronts but exclude the transverse-particle-velocity-
induced bending of rays. Thus, the proposed nonlinear NAH procedure can be applied to nonlinear wave propagation
problems only with straight rays: e.g., spherical and 1-D planar wave cases. In addition, the ‘‘local’’ nonlinearity caused by
high-level source surface displacements is not included in the WWE. That is, the WWE is appropriate to describe sound
waves only with dominant ‘‘cumulative’’ nonlinearity apart from a noise source surface.

It is here proposed that the WWE-based NAH procedure is derived in an open 3-D space. The anechoic boundary
condition is then applied at the infinite boundary of the open 3-D space. An acoustic pressure boundary condition is also
applied on a planar measurement surface. Then, through the linear, backward projection combined with the WWE-based,
nonlinear, forward projections, acoustic pressure fields in the 3-D space can be related to the acoustic pressure boundary
condition on the measurement surface. Fig. 1 shows the example of a semi-anechoic 3-D space to measure the jet noise of
a military fighter airplane. The rigid acoustic boundary condition is applied on the ground surface and the non-reflective
acoustic boundary condition, at the infinite boundary, r¼N. In Fig. 1, acoustic pressure transducers are placed on the
planar measurement surface to obtain the acoustic pressure boundary condition.

The proposed nonlinear and dissipative NAH procedure is valid only for monofrequency source cases. Thus, the first-
order, linear sound pressure at a single excitation frequency is used to calculate the second-order, nonlinear sound
pressure at twice of this excitation frequency. In multi-frequency source cases, however, Fenlon’s solution [11,14]
indicates that each frequency component consists of the harmonics, summations, or differences of other frequency
components. Thus, the excitation frequency component can include nonlinear components and cannot be directly applied
for the calculation of its second-order nonlinear component.

Numerical simulations with a nonlinear and dissipative pulsating sphere and an infinite-size panel are performed to
validate the proposed NAH procedure. Here, the Burgers equations [11] are solved in the spherical and rectangular
coordinates to obtain the nonlinear and dissipative sound pressure fields radiated from the high-level pulsating sphere and
the infinite-size panel, respectively. The calculated hologram data are backward projected to the source surface, and then
the reconstructed source data are input to the proposed, nonlinear, forward, NAH projection procedure. The sound
Fig. 1. Example of open 3-D space with rigid, non-reflective, and acoustic pressure boundary conditions.
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pressure fields reconstructed by using the proposed NAH procedure are compared with the directly-calculated sound
pressure fields.

2. Theory

The overall procedure of the proposed nonlinear NAH is presented as a flowchart in Fig. 2. The steps in Fig. 2 will be
described in the following sections.

2.1. Perturbation procedure for Westervelt wave equation

The nonlinear and dissipative Westervelt wave equation (WWE) [11,13] is represented as
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where b¼(gþ1)/2 is the nonlinearity coefficient for an ideal gas and b is the sound diffusivity that includes viscous and
thermal conduction effects [11,12]: i.e.,
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In Eqs. (1) and (2), p is the acoustic pressure, r0 is the ambient fluid medium density, c0 is the speed of sound, m and Z are
the shear and bulk viscosities, respectively, k is the thermal conductivity, Cv and Cp are the heat capacities at constant
volume and constant pressure, respectively, n¼m/r0 is the kinematic viscosity, g¼Cp/Cv is the specific heat capacity ratio,
and Pr¼mCp/k is the Prandtl number. The two terms on the right-hand side (RHS) of Eq. (1) thus represent thermoviscous
dissipation and cumulative nonlinear effects, respectively.

By using the perturbation method [11,15–21], the acoustic pressure, p in the Cartesian coordinates, (x, y, z) can be
expanded as

p x,y,z,tð Þ ¼ OðeÞþO e2
� �
þ � � � ¼ p1 x,y,z,tð Þþp2 x,y,z,tð Þþ � � � , (3)

where e is the small perturbation parameter (e.g., acoustic Mach number, e¼u1/c0 where u1 is the magnitude of acoustic
particle velocity) and pn is the nth order acoustic pressure (n¼1,2,3,y). The sound diffusivity, b in Eq. (2) is a small
number in the order of e in air [11]. By substituting p in Eqs. (3) into (1) and neglecting the O(e3) and higher-order small
terms, the first- and second-order equations can be associated with the O(e) and O(e2) terms, respectively. The resulting
first- and second-order equations are then represented as
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The third- and higher-order sound pressure components have negligibly small amplitudes even at an extremely high noise
level when compared to the first- and second-order acoustic pressure components. It is thus sufficient to describe the
nonlinear and thermoviscous effects by using the only first- and second-order sound pressure components. The first-order
equation in Eq. (4a) is a linear, lossless, homogeneous wave equation and the second-order equation in Eq. (4b) is a
nonlinear, dissipative, inhomogeneous wave equation. The left-hand side (LHS) of Eq. (4b) is a linear wave equation with
Fig. 2. Flowchart of nonlinear NAH procedure.
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the unknown of the second-order pressure, p2, while the RHS consists of the dissipative and nonlinear source terms that
are composed of the first-order acoustic pressure, p1. Thus, once the first-order sound pressure solution is obtained from
Eq. (4a), the second-order equation becomes a linear, inhomogeneous partial differential equation of which solution can be
obtained analytically for certain cases.

2.2. Nonlinear, dissipative, planar NAH projection

In the current nonlinear and dissipative NAH algorithm, the hologram sound pressure data is assumed to be measured
close to the sound source surface and thus linear components are much more dominant than nonlinear components. In
practical measurements of sound pressure fields generated by a monofrequency sound source, the measured sound
pressure data at this single fundamental frequency contain only first-order, linear sound pressure components. The linear
NAH algorithms [1–10] can be thus applied to the backward projection from the hologram surface to the sound source
surface at the fundamental frequency. Here, the improved Statistically Optimal Nearfield Acoustical Holography (SONAH)
algorithm [10] is applied to backward project the hologram sound pressure field at z¼zh to the source surface at z¼z0. As
described in Ref. [10], this improved SONAH procedure can significantly reduce the truncation errors at measurement
aperture edges. Thus, it allows accurately reconstructing a source sound pressure field even with the hologram data
measured by using a microphone array with a small measurement aperture. This SONAH backward projection procedure is
also indicated as the first step in Fig. 2. The linearly reconstructed sound pressure field on the source plane is then input to
the nonlinear and dissipative NAH forward projection procedure.

For the forward projection, cumulative nonlinear and thermoviscous effects become more significant as sound wave
propagates further to the farfield of a noise source [11]. This forward projection is the second step in Fig. 2 and described in
the following derivation procedure in an open 3-D space (i.e., free field) where there is no wave reflected from the infinite
boundary (i.e., anechoic boundary condition). A semi-anechoic condition can be also considered by mirroring the
measured sound pressure data with respect to the rigid surface (see Fig. 1) and combining the original and mirrored
data. The combined data can be then projected as in a free field.

In the Cartesian coordinates, (x,y,z), the acoustic pressure solution of Eq. (4a) at the fundamental frequency of o can be
obtained from the conventional, linear, planar NAH projection [1–3] in a discretized form as

p1 x,y,z,tð Þ ¼ Re
1

NxNy

XNx�1

m ¼ 0

XNy�1

n ¼ 0

P1 kxm,kyn,z0,o
� �

eimDkxxeinDkyyeikzmn z�z0ð Þe�iot

 !
, (5)

where z0 and z are the source and reconstruction surface locations (zZz0), respectively, Nx and Ny are the number of
measurement points along the x- and y-directions, respectively, and (kxm,kyn)¼(mDkx,nDky) are the discrete wave
numbers. The x- and y-direction wave number intervals are determined by the following equations:

Dkx ¼ 2p=Lx ¼ 2p= NxDxð Þ, (6a)

Dky ¼ 2p=Ly ¼ 2p= NyDy
� �

, (6b)

where Dx and Dy are the sampling spaces in the x- and y-directions, respectively. In Eq. (5), the wave number spectrum,
P1(kxm,kyn,z0,o)¼P1mn, is obtained by applying the spatial Fast Fourier Transform (FFT) to the source sound pressure data,
p1(x,y,z0,o) that is obtained by applying the linear, backward SONAH projection to the measured sound pressure data at
z¼zh (see the first step in Fig. 2). The projection relation between the reconstruction and source surfaces is represented as

P1 m,n,z,oð Þ ¼ P1 m,n,z0,oð Þeikzmn z�z0ð Þ (7)

In Eq. (7), the z-direction wave number, kzmn is the function of o, kxm, and kyn: i.e.,

k2
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2
� nDky
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, (8)

where k¼o/c0 is the acoustic wave number. By substituting Eqs. (5) into (4b), the inhomogeneous source terms on the
RHS of Eq. (4b) are represented as
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In Eq. (10), the high wave number components (i.e., lZNx and qZNy) are set to zero since they are the subsonic
components decaying out exponentially during the forward projections along the z-direction. Similarly, the P1 and kz terms
with the subscripts of (l�m)(q�n) have only non-zero values when the subscripts, (l�m) and (q�n) are within [0, Nx�1]
and [0, Ny�1], respectively. By plugging Eqs. (9) and (10) into (4b) and writing the second-order acoustic pressure solution
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as p2¼Re(p21e-iot
þp22e-i2ot), Eq. (4b) can be decomposed into two inhomogeneous Helmholtz equations: i.e.,
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In Eqs. (11) and (12), p21 is associated with the ‘‘dissipative’’ sound pressure component at the frequency of o while p22

corresponds to the cumulative ‘‘nonlinear’’ sound pressure component at the frequency of 2o.
The solution of p21(x, y, z) in Eq. (11) can be assumed as

p21 x,y,zð Þ ¼
XNx�1

m ¼ 0

XNy�1

n ¼ 0

P21mnðzÞe
imDkxxeinDkyy: (13a)

By substituting Eqs. (13a) into (11), the wave number spectrum, P21mn can be represented as

P21mn zð Þ ¼�
ibo3 z�z0ð ÞP1mn

i2NxNyc4
0kzmn

eikzmn z�z0ð Þ: (13b)

In Eq. (13), homogeneous solutions are neglected to consider the only particular solution since the transient responses
associated with the homogeneous solutions decay out quickly. Thus, the steady-state response represented by the
particular solution is only of interest. Reflective waves propagating in the negative z-direction are also neglected in Eq. (13)
since no reflection occurs at the infinite boundary of the open 3-D space. Eq. (13) also satisfies the assumption that there is
negligible ‘‘dissipation’’ at the source surface: i.e., P21mn(z0)¼0. Since there is a (z–z0) term in Eq. 13(b), the dissipative
sound pressure spectrum, P21mn(z) increases as z increases in the supersonic wavenumber region, i.e., (kxm)2

þ(kyn)2ok2.
Therefore, a renormalization procedure is required to remove this secular term to obtain a uniformly valid solution.

Similar to the aforementioned solution procedure for p21, the solution of p22(x, y, z) in Eq. (12) can be assumed as
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In Eq. (14a), the nonlinear wave number spectrum, P22lq is represented as
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where
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2zlq ¼ 4k2

� lDkxð Þ
2
� qDky
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: (14c)

The detailed solution procedure to obtain Eq. (14) is presented in the Appendix. Similar to Eq. (13), homogeneous solutions
are neglected in Eq. (14). Eq. (14) also satisfies the assumption that there is neither a reflective wave generated at the
infinite boundary of the open 3-D space nor a nonlinear component at the source surface, i.e., P22lq(z0)¼0. As in the
dissipative sound pressure spectrum in Eq. (13b), the nonlinear sound spectrum, P22lq(z) includes the secular term that
increases as z increases in the supersonic region.

The dissipative and nonlinear wave number spectra in Eqs. (13b) and (14b) are obtained from the second step in Fig. 2.
Then, a renormalization procedure can be used to remove the secular terms and result in uniformly valid solutions (see
Step 3a in Fig. 2 and Section 2.3). Another approach is applying spatial inverse Fourier transform to the spectra in Eqs.
(13b) and (14b) to directly obtain the reconstructed sound pressure fields without the renormalization procedure (see Step
3b in Fig. 2). In Section 3.4, it is demonstrated that these two approaches result in almost identical reconstructed sound
pressure fields in the nearfield of a pulsating sphere.

2.3. Renormalization

In order to obtain the uniformly valid solution of Eq. (4) at a large z value, the secular terms including the
(z�z0) � exp(ikz(z�z0)) term in Eqs. (13b) and (14b) are eliminated by using a renormalization procedure. From Eqs. (5),
(13), and (14), the total sound pressure is written in a complex form as

p x,y,z,tð Þ ¼ p1 x,y,zð Þe�iotþp21 x,y,zð Þe�iotþp22 x,y,zð Þe�i2ot : (15)
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In order to eliminate the secular terms in Eqs. (13b) and (14b), a strained coordinate, z is introduced as

z¼ zþez1 x,y,z,z,tð Þ, (16)

where e is the small perturbation parameter (i.e., acoustic Mach number) and z1 is the function determined to eliminate all
the second-order small secular terms. When compared to the three strained coordinates defined in a 3-D space in Refs.
[17,18], the only one strained coordinate is used in Eq. (16) to renormalize the secular terms. By substituting Eqs. (16) into
(5), (13), and (14) and retaining up to the second-order terms, a condition for removing the secular terms is obtained: i.e.,
the strain coordinate, z can be found by setting the absolute value of the following renormalization function, f to zero for a
given set of (x,y,z,t):

f x,y,z,z,tð Þ ¼
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The uniformly valid total sound pressure is then represented as
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, (18)

where the subscripts, l and q satisfy la2m or qa2n. The nonlinear and dissipative sound pressure components are
calculated by subtracting the linear NAH forward projected sound pressure from the total sound pressure in Eq. (18).

2.4. Nonlinear and dissipative pulsating sphere simulation

In this section, a pulsating sphere, with the radius of rs, that radiates a nonlinear and dissipative sound pressure field is
considered to validate the proposed nonlinear, dissipative, planar NAH procedure. Note that an acoustic monopole cannot
be used to simulate the nonlinear and dissipative sound field since its infinitely small size compared to the smallest wave
length makes it impossible to effectively radiate nonlinear sound fields [11]. Therefore, the radius, rs, is here set to be in the
same order of magnitude with the wave length, l. The nonlinear and dissipative sound pressure field generated from the
pulsating sphere is then obtained from the Burgers equation in the spherical coordinates, (r, y, j) with the assumption of
the y- and j-direction symmetry conditions: i.e.,
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where t¼t�(r�rs)/c0 is the retarded time and r is the radial location (rZrs). Similar to the WWE, the spherical Burgers
equation also describes cumulative nonlinear effects. According to the perturbation procedure presented in Section 2.1, the
sound pressure, p in Eq. (19) is decomposed into multiple orders of magnitude (see Eq. (3)). By neglecting the third- and
higher-order small terms, Eq. (19) can be decomposed into the following first- and second-order equations: i.e.,
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Then, the total sound pressure solution is represented as

p r,tð Þ ¼ Re P1rs
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where P1 is the acoustic pressure amplitude on the sphere surface at r¼rs and C1o and C2o are the constants defined as

C1o ¼�
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P1rso2, (22b)
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When compared to the first-order sound pressure component, the second-order components in Eq. (22a) have the
growing factors, (r�rs) and ln(r/rs). Thus, the solution in Eq. (22) is not uniformly valid. These secular terms are thus
removed by using the aforementioned renormalization procedure (see Section 2.3). Here, the strained coordinate, a is
defined as

r¼ aþer1 r,a,tð Þ, (23)

where r1 is determined to eliminate the second-order secular terms in Eq. (22). By plugging Eqs. (23) into (22), the
renormalization function can be represented as

g r,a,tð Þ ¼
e�iot

a2
�P1rs r�að ÞþaC1o r�rsð ÞþaC2oln

r

rs

� �
e�iot

� 	
: (24)

Similar to Section 2.3, the complex strained coordinate, a can be obtained by setting the absolute value of Eq. (24) to zero
for the given r and t. The renormalized total sound pressure in Eq. (22a) is then represented in the form of complex sound
pressure as

p r,tð Þ ¼ P1rs
e�iot

a : (25)

This renormalized sound pressure includes both linear and nonlinear sound pressure components. The linear sound
pressure data on the hologram surface (z¼zh) at the fundamental frequency of o can be obtained from Eq. (25) by
replacing a with r¼rhn where rhn represents the radial location of the nth receiver on the hologram surface. These
hologram data are linearly backward projected to the source surface at z¼z0 and the reconstructed source sound pressure
data are then used for the nonlinear, forward NAH projections. The linear and nonlinear sound pressure fields directly-
calculated from Eq. (25) are compared with the reconstructed sound pressure fields to validate the projection performance
of the proposed NAH procedure.

In addition to the pulsating sphere simulation, the 1-D nonlinear planar wave field radiated from an infinite-size panel
is also calculated by solving the Burgers equation in the rectangular coordinates based on the aforementioned perturbation
procedure. The directly-calculated nonlinear sound pressure field radiated from the infinite-size panel is then compared to
the nonlinearly-reconstructed sound pressure field. Since the solution procedure to obtain the 1-D nonlinear planar wave
is similar to the pulsating sphere case, it is not presented in this paper.

3. Numerical simulation results

3.1. Simulation setups

Fig. 3(a) shows the pulsating sphere simulation setup in a free field. The center of the pulsating sphere with the radius
of rs¼0.25 m is placed at (x,y,z)¼(0.75,0.75,�0.25) m. The sound pressure amplitude of the pulsating sphere on its
undisturbed surface at r¼0.25 m is 6 kPa (i.e., 169.5 dB referenced at 20 mPa) and the excitation frequency is 1 kHz.
A 31�31 acoustic pressure transducer array with the sampling intervals of Dx¼Dy¼0.05 m is placed at z¼0.05 m to
obtain hologram sound pressure data. Thus, the hologram height is 0.05 m when the plane on the pulsating sphere surface
at z¼0 m is defined as the source surface. The fundamental frequency component at 1 kHz contains the only first-order,
linear sound pressures. Thus, in a ‘‘real’’ measurement, ‘‘linear’’ NAH measurement techniques, such as the scan-based,
multi-reference NAH measurement technique and the partial field decomposition procedures [4–6], can be used for the
proposed NAH procedure. Although a microphone with a large dynamic range (e.g., up to 170 dB) is usually expensive, a
small number of such microphones can thus be used to conduct scanning measurements to cover a large measurement
surface.

Fig. 3(b) presents the infinite-size panel simulation setup. The sound pressure magnitude on the panel surface is 1.2 kPa
(i.e., 155.6 dB referenced at 20 mPa) and the excitation frequency is 1 kHz. The acoustic pressure transducer array has an
increased size of 61�61 with the same sampling intervals of Dx¼Dy¼0.05 m as in the pulsating sphere simulation case.
The panel is tilted by 41 around the y-axis and the hologram height is 0.05 m as shown in Fig. 3(b). The whole panel is
assumed to be excited in phase with respect to its tilted position.

Since both the pulsating sphere and infinite-size panel can generate ‘‘cumulative’’ nonlinear sound waves with straight
rays, the two simulations can be used to validate the proposed NAH procedure. In the following simulation and NAH
projection results, an instant time, t is considered at the fundamental frequency of 1 kHz and the second harmonic of
2 kHz. Then, the absolute values of the resulting linear and nonlinear sound pressures obtained from Eqs. (18) and (25) are
constant regardless of the time, t. The time-averaged sound pressure amplitudes (i.e., root-mean-square amplitudes) are
thus obtained from the absolute values of the complex sound pressure amplitudes divided by the square root of 2.

3.2. Directly-calculated sound pressure fields

In order to calculate the sound pressure field radiated from the pulsating sphere by using Eq. (25), the strained
coordinate, a, is first determined by numerically searching for the roots of 9g(r,a,t)9¼0 in Eq. (24). For example, Fig. 4(a)



Fig. 3. Sketch of nonlinear, dissipative numerical simulation setups: (a) Pulsating sphere simulation, and (b) Infinite-size panel simulation.
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shows the absolute value of the renormalization function, g(r,a,t) as the function of the real and imaginary parts of a at
r¼1.25 m. The root of 9g(r,a,t)9¼0 can be identified from Fig. 4(a) and indicated in a circle in Fig. 4(a)–(c). Here, the root
searching procedure is based on the assumptions that the strained coordinate, a is a continuous function and there is
neither cumulative nor local nonlinear components on the stationary source surface at r¼0.25 m: i.e., a0¼0.25 at
r¼0.25 m, and an at rn¼(nDrþ0.25) m is numerically searched with the initial solution of an�1 (n¼1,2,3,y). Fig. 4(b) and
(c) shows the real and imaginary parts of (a – r), as a function of r, that exhibit periodic behaviors with the period of one
wave length (i.e., l¼0.34 m at 1 kHz) while their amplitudes increase as r increases.

By using the strained coordinate, a in Fig. 4, the total (i.e., linear, nonlinear, and dissipative) sound pressure field is
directly calculated from Eq. (25). The linear, lossless component that is obtained by replacing a with r in Eq. (25) is shown
in Fig. 5(a) at the fundamental frequency of 1 kHz. The linear sound pressure amplitude in Fig. 5(a) decreases
proportionally to 1/r. The cumulative nonlinear sound pressure field is obtained by subtracting the linear and dissipative
sound pressure from the total sound pressure (see Fig. 5(b)). The nonlinear sound pressure field in Fig. 5(b) has the
minimum sound pressure level (SPL) at (x,y,z)¼(0.75,0.75,0) m (i.e., on the sphere surface at r¼0.25 m) where the
nonlinear SPL is approximately 115 dB. The nonlinear SPL is proportional to ln(r/rs)/r and approximately 10 dB less than
the linear SPL at r¼3 m. The dissipative sound pressure field can be obtained by considering only the dissipative source
term in Eq. (21) and following the identical perturbation and renormalization procedures as in Section 2.4 (see Fig. 5(c)).
Fig. 5(c) shows that the dissipative sound pressure field has negligibly low SPL when compared with the linear and
nonlinear sound pressure fields in Fig. 5(a) and (b).
3.3. Backward projected sound pressure fields

The sound pressure data calculated on the hologram surface at the fundamental frequency of 1 kHz is linearly backward
projected onto the source surface. In order to reduce the truncation errors at the measurement aperture edges, the
improved SONAH procedure [10] is used for this linear backward projection, which is indicated as Step 1 in Fig. 2.

Fig. 6(a) and (b) shows the directly-calculated sound pressure field and the linearly-backward-projected sound pressure
field by using the improved SONAH procedure, respectively. The reconstructed sound pressure field matches well with the
directly-calculated one (see the reconstruction error in Fig. 6(c)). Although the reconstruction error is relatively large
approximately at 0.6 dB along the measurement aperture edges, a spatial window can be used to suppress this
reconstruction error in the nonlinear forward NAH projections. The reconstructed sound pressure data on the source
surface at z¼0 m is input to the proposed nonlinear NAH projection procedure.



Real(α-r) = -0.1458 at r = 1.25 m

Imag(α-r) = -0.173 at r = 1.25 m

α = 1.1042 - 0.173i at r = 1.25 m

Fig. 4. Strained coordinate, a for pulsating sphere simulation: (a) Absolute values of renormalization function, 9g(r,a,t)9 at r¼1.25 m, (b) real part of (a –

r), and (c) imaginary part of (a – r).
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3.4. Forward projected sound pressure fields

The sound pressures along the four reconstruction lines in Fig. 5(a) and (b) are reconstructed by using the proposed
nonlinear NAH procedure. The reconstruction lines are selected in the nearfield of the pulsating sphere since the linear,
forward NAH procedure is limited to nearfield reconstructions due to the farfield reconstruction error caused by spatial-
FFT-induced ghost images [1–3]. The ghost image effects can be reduced by padding a large number of zeros around the
source sound pressure data although computation time increases significantly due to the increased data size.

In order to reconstruct the sound pressures along the reconstruction lines from the linearly reconstructed source sound
pressure, the strained coordinate, z in Eq. (16) is first determined by numerically searching for the roots of 9f(x,y,z,z,t)9¼0
in Eq. (17) as in the pulsating sphere simulation case described in Section 3.2. Fig. 7(a)–(d) shows the real and imaginary
parts of (z – z) along the four reconstruction lines. The results along reconstruction lines 1–3 in Fig. 7(a)–(c) show similar
periodic behaviors as in the pulsating sphere case in Fig. 4(b) and (c) with the period of one wavelength.

Fig. 8(a)–(d) shows the directly-calculated and NAH-projected SPLs along reconstruction lines 1–4. Here, the NAH-
projected ‘‘linear’’ SPLs are obtained by applying the conventional, linear NAH procedure to the source data as in Eq. (5)
and the NAH-projected, cumulative ‘‘nonlinear’’ SPLs are calculated by subtracting the NAH-projected ‘‘linear’’ sound
pressure components from the ‘‘total’’ components obtained from the renormalization procedure as in Eq. (18). Since the
dissipative component is negligible (see Fig. 5), the subtraction of the linear component from the total sound pressure
results in the nonlinear component dominantly. The NAH-projected, linear SPLs match well with the directly-calculated,
linear SPLs along the all four reconstruction lines (see the dash lines with circular markers). The NAH-projected, nonlinear
SPLs also match well with the directly-calculated, nonlinear SPLs along the reconstruction lines 3 and 4 (see the solid lines
with triangle markers in Fig. 8(c) and (d)). Along off-centered reconstruction lines 1 and 2 in Fig. 8(a) and (b), the
discrepancies between the directly-calculated and NAH-projected nonlinear components in the region close to the source



Reconstruction line 1: 
(x,y) = (0.45,0.75) m

2: (x,y) = (0.6,0.75) m 

3: (x,y) = (0.75,0.75) m
4: (y,z) = (0.75,1) m

Reconstruction line 1

2

3 4

Fig. 5. 3-D sound pressure fields directly-calculated from pulsating sphere on x–y plane at z¼0 m and x–z plane at y¼0.75 m when excited at 1 kHz: (a)

linear, lossless sound pressure field, (b) corresponding nonlinear sound pressure field at 2 kHz, and (c) corresponding dissipative sound pressure field at

1 kHz.

Y. Niu, Y.-J. Kim / Journal of Sound and Vibration 332 (2013) 952–967 961
surface at z¼0 m are caused by the assumption of no nonlinear component at the source surface, although the pulsating
sphere simulation results in the cumulative nonlinear components at the source surface (see Fig. 5(b)). However, these
discrepancies decrease as z increases.

Fig. 9(a)–(d) shows the reconstruction errors that are defined as the SPL differences between the directly-calculated and
NAH-projected SPLs in Fig. 8. Along off-centered reconstruction lines 1 and 2, Fig. 9(a) and (b) shows that the nonlinear
NAH reconstruction errors represented by the solid lines with the triangle markers decrease quickly around the source
surface as z increases. Along reconstruction line 3 at the center of the measurement aperture, the nonlinear reconstruction
error is within 0.2 dB, while the linear reconstruction error represented by the dash line with circular markers increases
oscillatory as z increases with the maximum error of approximately 0.35 dB at z¼1.2 m. The latter indicates that the
spatial-FFT-induced ghost image effects and the measurement aperture truncation errors become more significant as z



Fig. 6. Linear sound pressure fields on x–y plane at z¼0 m: (a) directly-calculated sound pressure field, (b) SONAH-reconstructed sound pressure field,

and (c) reconstruction error (i.e., dB differences between reconstructed and directly-calculated sound pressure levels (SPLs)).

Fig. 7. Real and imaginary parts of strained coordinate fluctuation, (z–z) along reconstruction lines 1–4: (a) reconstruction line 1, (b) reconstruction line

2, (c) reconstruction line 3, and (d) reconstruction line 4.

Fig. 8. Directly-calculated and NAH-projected SPLs along reconstruction lines 1–4: (a) reconstruction line 1, (b) reconstruction line 2, (c) reconstruction

line 3, and (d) reconstruction line 4.
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Fig. 9. NAH reconstruction errors along reconstruction lines 1–4: (a) reconstruction line 1, (b) reconstruction line 2, (c) reconstruction line 3, and (d)

reconstruction line 4.

Fig. 10. Reconstruction results with and without renormalization along reconstruction line 3 extended up to z¼2.5 m (The line and marker legends are

same as Figs. 8 and 9 except no renormalization case): (a) directly-calculated and NAH-projected linear and nonlinear SPLs, and (b) reconstruction errors.
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increases further from the pulsating sphere [1–3]. Along reconstruction line 4, Fig. 9(d) shows that both the linear and
nonlinear NAH reconstruction errors are approximately 0.1–0.3 dB around the center at x¼0.75 m and become larger (e.g.,
up to approximately 0.5 dB) as the reconstruction location is further away from the center to the measurement aperture
edges where the aperture edge truncation errors and the ghost image effects are more significant than those at the center.

The small magnitudes of the strained coordinate fluctuation, (z – z) in Fig. 7 indicate that the secular terms in Eqs. (13b)
and (14b) are negligible in Eqs. (15) and (18) for the given reconstruction space. Thus, Eqs. (13) and (14) can be directly
applied for the nonlinear and dissipative NAH projections without renormalizing these equations (see Step 3b in Fig. 2)
although the renormalization procedure is necessary for long distance farfield projections.

Fig. 10(a) and (b) shows the effects of the renormalization along reconstruction line 3 extended up to z¼2.5 m (i.e.,
zffi7.3l where l is the wave length at 1 kHz). The same line and marker legends in Figs. 8 and 9 are reused in Fig. 10
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except no renormalization case. The NAH-projected, nonlinear SPL and reconstruction error without the renormalization
are represented by hollow square markers. In Fig. 10(a), as z increases farther from the source surface at z¼0 m, the
nonlinear component becomes relatively significant compared to the linear component: i.e., the SPL difference between
the linear and nonlinear components becomes small as z increases. In Fig. 10(b), the linear reconstruction error
represented by the dash line with circular markers increases oscillatory up to 1.2 dB at z¼2.5 m. The latter indicates
that the spatial-FFT-induced ghost image effects and the measurement aperture truncation errors become much more
significant as the reconstruction distance, z increases much further from the source, although the edges of the source data
are smoothed by applying the spatial Tukey window with the 50 percent flat top and the source data are zero-padded with
8Nx�8Ny zeros. The nonlinear reconstruction error of the no renormalization case (i.e., the hollow rectangular markers) in
Fig. 10(b) has almost identical values with that of the renormalization case represented by the solid line with triangle
markers. The maximum nonlinear reconstruction error is approximately 0.5 dB at z¼2.5 m.

For no renormalization procedure case, the directly-calculated and reconstructed ‘‘linear’’ sound pressure fields and the
reconstruction errors are shown in Fig. 11 on the x–y plane at z¼1.25 m and the x–z plane at y¼0.75 m. The sound
pressure fields in linear scales in Fig. 11 are obtained from the real parts of Eqs. (25) and (18) by considering the only linear
Fig. 11. Directly-calculated and NAH-projected ‘‘linear’’ sound pressure fields from pulsating ‘‘sphere’’ on x–y plane at z¼1.25 m and x–z plane at

y¼0.75 m: (a) directly-calculated on x–y plane, (b) reconstructed on x–y plane, (c) reconstruction error on x–y plane, (d) directly-calculated on x–z plane,

(e) reconstructed on x–z plane, and (f) reconstruction error on x–z plane.

Fig. 12. Directly-calculated and NAH-projected ‘‘nonlinear’’ sound pressure fields from pulsating ‘‘sphere’’ on x–y plane at z¼1.25 m and x–z plane at

y¼0.75 m: (a) directly-calculated on x–y plane, (b) reconstructed on x–y plane, (c) reconstruction error on x–y plane, (d) directly-calculated on x–z plane,

(e) reconstructed on x–z plane, and (f) reconstruction error on x–z plane.



Fig. 13. Directly-calculated and NAH-projected ‘‘nonlinear’’ sound pressure fields from infinite-size ‘‘panel’’ on x–y plane at z¼1.25 m and x–z plane at

y¼1.5 m: (a) directly-calculated on x–y plane, (b) reconstructed on x–y plane, (c) reconstruction error on x–y plane, (d) directly-calculated on x–z plane,

(e) reconstructed on x–z plane, and (f) reconstruction error on x–z plane.
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and lossless components. The reconstructed sound pressure fields at 1 kHz agree well with the directly-calculated ones
(see the reconstruction errors in Fig. 11(c) and (f)). Similar to the linear reconstruction error shown in Fig. 10(b), the linear
NAH reconstruction errors on the x–z plane in Fig. 11(f) increase as z increases due to the ghost image effects and
measurement aperture edge truncation errors.

Fig. 12 shows the directly-calculated and reconstructed ‘‘nonlinear’’ sound pressure fields at 2 kHz and the
reconstruction errors on the same surfaces as in Fig. 11. The well matched nonlinear sound pressure fields in Fig. 12(a),
(b), (d), and (e) as well as the small reconstruction errors with the maximum SPL difference of 0.6 dB in Fig. 12(c) and (f)
successfully validate the projection performance of the proposed nonlinear NAH procedure in the spherical wave
simulation. In Fig. 12(f), the discrepancies at the off-centered locations close to the source surface at z¼0 m are caused
by the assumption of no nonlinearity on the source plane, as described in Fig. 8(a) and (b).

Similar to Fig. 12, Fig. 13 shows the directly-calculated and NAH-predicted ‘‘nonlinear’’ sound pressure fields and the
reconstruction errors for the infinite-size ‘‘panel’’ simulation. Here, the x–y plane is chosen at z¼1.25 m, and the x–z plane
is placed at y¼1.5 m. The directly-calculated and NAH-projected nonlinear sound pressure fields agree well with each
other on both the planes (see the reconstruction errors in Fig. 13(c) and (f)). Except the regions close to the planar source
plane at z¼0 m where zero-nonlinearity assumption is imposed, the maximum reconstruction error in Fig. 13(c) and (f) is
approximately 1 dB. Thus, the reconstruction performance of the proposed nonlinear NAH procedure is also validated
through the infinite-size panel simulation.
4. Conclusions

In this paper, the novel, nonlinear, dissipative, planar NAH algorithm is introduced that is based on the first- and
second-order perturbation solutions of the Westervelt wave equation (WWE) and the modified renormalization procedure.
The proposed NAH procedure is applicable to cumulative nonlinearity dominant sound fields with straight rays such as
spherical waves and 1-D planar waves. By using the perturbation method, the WWE is decomposed into the first- and
second-order wave equations. The conventional, linear, planar NAH technique is applied to solve the first-order wave
equation. The resulting linear sound pressure solution is input to the second-order wave equation as the inhomogeneous
source terms to find the second-order, nonlinear sound pressure solutions. The secular terms in the second-order solutions
are removed by using the modified renormalization approach to obtain the uniformly valid solution.

By applying the aforementioned perturbation and renormalization procedures to the spherical Burgers equation, the
sound pressure field radiated from the high-level pulsating sphere is calculated to validate the proposed NAH algorithm. In
the nearfield of the pulsating sphere up to z¼1.2 m¼3.5l, the SPLs reconstructed by using the proposed NAH procedure
match well with the directly-calculated SPLs along the four reconstruction lines. The maximum reconstruction errors are
approximately 0.3 dB for the linear NAH projections and 0.2 dB for the nonlinear NAH projections.

Along the centered reconstruction line, as z value increases farther from the sound source surface up to z¼2.5 m¼7.3l,
the spatial-FFT-based linear reconstruction solution suffers from the more significant spatial-FFT-induced ghost image
effects and the measurement aperture truncation errors, which increase the linear reconstruction error up to 1.2 dB. Then,
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this linear reconstruction error degrades the performance of the proposed nonlinear NAH procedure with the maximum
reconstruction error of 0.5 dB.

In addition to the NAH results along the reconstruction lines, the sound pressure fields generated from the pulsating
sphere and infinite-size vibrating panel are reconstructed in the 3-D space and compared to the directly-calculated sound
pressure fields. The nonlinear NAH reconstruction results agree well with the exact ones at the maximum reconstruction
errors of 0.6 dB and 1 dB, respectively, for the pulsating sphere and infinite-size panel simulations. Thus, through both the
pulsating sphere and infinite-size panel simulations, it can be concluded that the reconstruction performance of the
proposed NAH procedure is successfully validated.

In the proposed nonlinear NAH projections, the secular terms have negligible effects on the uniformly valid solutions.
Thus, it can be also concluded that the proposed nonlinear and dissipative NAH procedure can be applied to reconstruct
the sound pressure fields successfully in the nearfields of the sound sources regardless of the renormalization procedure.
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Appendix A

The detailed procedure for deriving the solution of Eq. (12) is presented in this appendix. By plugging Eqs. (14a) to (12)
and considering arbitrary l and q terms, the inhomogeneous second-order ordinary differential equation can be obtained as

d2P22lq

dz2
þk2

2zlqP22lq ¼
2bo2

N2
x N2

yr0c4
0

XNx�1
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" #
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The particular solution to Eq. (A1) is obtained by using the variation of parameters as
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where the Wronskian Wlq is

Wlq ¼ eik2zlq z�z0ð Þ de�ik2zlq z�z0ð Þ

dz
�

deik2zlq z�z0ð Þ

dz
e�ik2zlq z�z0ð Þ ¼ �2ik2zlq: (A3)

Therefore, Eq. (A2) can be written as the combination of homogeneous and particular solutions for the case of la2m or
qa2n: i.e.,
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The last two terms in the square bracket can be ignored since they are homogeneous solutions. However, the function
exp(ik2zlq(z�z0)) with the coefficient of 2ik2zlq in the third term is retained to satisfy the P22lq(z0)¼0 condition (i.e., no
nonlinearity condition on the source surface), while the exp(� ik2zlq(z�z0)) term is discarded due to its exponentially
increasing nature when k2zlq is imaginary: i.e.,
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For the case of l¼2m and q¼2n,the wave numbers can be related as

k2zlq

� �2
¼ kzmnþkz l�mð Þ q�nð Þ

� �2
¼ 4 kzmnð Þ

2, when l¼ 2m and q¼ 2n:

Then, the solution of Eq. (A2) becomes

P22lq zð Þ ¼
2bo2

N2
x N2

yr0c4
0

z�z0ð Þeik2zlq z�z0ð Þ

2ik2zlq
P2

1 l=2ð Þ q=2ð Þ when l¼ 2m and q¼ 2n: (A6)

Thus, the nonlinear wave number spectrum P22lq in Eq. (14b) is obtained as in Eqs. (A5) and (A6).
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